Video‐augmented fluoroscopy for distal interlocking of intramedullary nails decreased radiation exposure and surgical time in a bovine cadaveric setting

We aimed to assess the feasibility of a video‐augmented fluoroscopy (VAF) technique using a camera‐augmented mobile C‐arm (CamC) for distal interlocking of intramedullary nails.

[1]  Hongen Liao,et al.  Three‐dimensional augmented reality surgical navigation with hybrid optical and electromagnetic tracking for distal intramedullary nail interlocking , 2018, The international journal of medical robotics + computer assisted surgery : MRCAS.

[2]  H. Liao,et al.  Augmented reality surgical navigation with accurate CBCT-patient registration for dental implant placement , 2018, Medical & Biological Engineering & Computing.

[3]  M. Mccarthy,et al.  Tracking Cumulative Radiation Exposure in Orthopaedic Surgeons and Residents: What Dose Are We Getting? , 2017, The Journal of bone and joint surgery. American volume.

[4]  Ming Luo,et al.  One visualization simulation operation system for distal femoral fracture , 2017, Medicine.

[5]  Musa Citak,et al.  Robotic distal locking of intramedullary nailing: Technical description and cadaveric testing , 2017, The international journal of medical robotics + computer assisted surgery : MRCAS.

[6]  L. Zirkle,et al.  The SIGN Nail: Factors in a Successful Device for Low-Resource Settings , 2015, Journal of orthopaedic trauma.

[7]  Musa Citak,et al.  Preoperative virtual reduction reduces femoral malrotation in the treatment of bilateral femoral shaft fractures , 2015, Archives of Orthopaedic and Trauma Surgery.

[8]  Simon Weidert,et al.  Intra-operative augmented reality in distal locking , 2015, International Journal of Computer Assisted Radiology and Surgery.

[9]  M. Çiftdemir,et al.  Does electromagnetic-manual guided distal locking influence rotational alignment in antegrade femoral nailing? , 2015, International Orthopaedics.

[10]  Lejing Wang,et al.  Multi-Modal Intra-Operative Navigation During Distal Locking of Intramedullary Nails , 2015, IEEE Transactions on Medical Imaging.

[11]  O Moreschini,et al.  Insertion of distal locking screws of tibial intramedullary nails: a comparison between the free-hand technique and the SURESHOT™ Distal Targeting System. , 2014, Injury.

[12]  E. Yengil,et al.  The comparison of freehand fluoroscopic guidance and electromagnetic navigation for distal locking of intramedullary implants. , 2013, Injury.

[13]  Emil H Schemitsch,et al.  Virtual fracture carving improves understanding of a complex fracture: a randomized controlled study. , 2012, The Journal of bone and joint surgery. American volume.

[14]  Christian Krettek,et al.  Hands-on robotic distal interlocking in intramedullary nail fixation of femoral shaft fractures. , 2010, Technology and health care : official journal of the European Society for Engineering and Medicine.

[15]  Nassir Navab,et al.  Camera Augmented Mobile C-Arm (CAMC): Calibration, Accuracy Study, and Clinical Applications , 2010, IEEE Transactions on Medical Imaging.

[16]  Lejing Wang,et al.  First Animal Cadaver Study for Interlocking of Intramedullary Nails under Camera Augmented Mobile C-arm , 2010, IPCAI.

[17]  Musa Citak,et al.  Use of a virtual 3D software for planning of tibial plateau fracture reconstruction. , 2010, Injury.

[18]  Ekkehard Euler,et al.  Visual Servoing for Intraoperative Positioning and Repositioning of Mobile C-arms , 2006, MICCAI.

[19]  W. Panzer,et al.  Skill dependence of radiation exposure for the orthopaedic surgeon during interlocking nailing of long-bone shaft fractures: a clinical study , 2004, Archives of Orthopaedic and Trauma Surgery.

[20]  Ivan Zuna,et al.  Fluoroscopic guidance versus surgical navigation for distal locking of intramedullary implants. A prospective, controlled clinical study. , 2004, Injury.

[21]  Nassir Navab,et al.  Visual marker detection and decoding in AR systems: a comparative study , 2002, Proceedings. International Symposium on Mixed and Augmented Reality.

[22]  C Krettek,et al.  Novel Computer-Assisted Fluoroscopy System for Intraoperative Guidance: Feasibility Study for Distal Locking of Femoral Nails , 2001, Journal of orthopaedic trauma.

[23]  Nassir Navab,et al.  Interventions under Video-Augmented X-Ray Guidance: Application to Needle Placement , 2000, MICCAI.

[24]  Michael Fuchs,et al.  Strahlenschutz im Operationssaal , 1999, Operative Orthopädie und Traumatologie.

[25]  Nassir Navab,et al.  Merging visible and invisible: two Camera-Augmented Mobile C-arm (CAMC) applications , 1999, Proceedings 2nd IEEE and ACM International Workshop on Augmented Reality (IWAR'99).

[26]  C. Krettek,et al.  A mechanical distal aiming device for distal locking in femoral nails. , 1999, Clinical orthopaedics and related research.

[27]  C. Krettek,et al.  Experimental study of distal interlocking of a solid tibial nail: radiation-independent distal aiming device (DAD) versus freehand technique (FHT). , 1998, Journal of orthopaedic trauma.

[28]  P M Rommens,et al.  Radiation exposure to the hands and the thyroid of the surgeon during intramedullary nailing. , 1998, Injury.

[29]  T. Dipasquale,et al.  Radiation exposure to the orthopaedic surgical team during fluoroscopy: "how far away is far enough?". , 1997, Journal of orthopaedic trauma.

[30]  Robert A. Winquist,et al.  Locked Femoral Nailing , 1993, The Journal of the American Academy of Orthopaedic Surgeons.

[31]  Taiwo,et al.  Interlocking Nail Screw Targeting With the Sign Interlocking System , 2015 .

[32]  Lejing Wang,et al.  Camera Augmented Mobile C-arm , 2009, Bildverarbeitung für die Medizin.

[33]  Lejing Wang,et al.  Workflow Based Assessment of the Camera Augmented Mobile Carm System , 2008 .

[34]  Ekkehard Euler,et al.  Interactive Guidance System for C-Arm Repositioning Without Radiation , 2007, Bildverarbeitung für die Medizin.

[35]  Ekkehard Euler,et al.  CAMC (camera augmented mobile C-arm)-first clinical application in a cadaver study , 2006 .