Boundary layer for a penalization method for viscous incompressible flow

To compute the flow around an obstacle, it is now quite classical to add in the equations a penalization term on this obstacle. From a computational point of vue, this method gives very accurate results and avoid to use unstructured mesh to discretize the equations in complex geometry. The aim of this paper is to give a mathematical explanation of such good results. This study is performed for the incompressible Navier Stokes equations.

[1]  Nicholas K.-R. Kevlahan,et al.  Computation of turbulent flow past an array of cylinders using a spectral method with Brinkman penalization , 2001 .

[2]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[3]  Philippe Angot,et al.  Analysis of singular perturbations on the Brinkman problem for fictitious domain models of viscous flows , 1999 .

[4]  P. Fabrie,et al.  New efficient boundary conditions for incompressible Navier-Stokes equations : a well-posedness result , 1996 .

[5]  P. Fabrie,et al.  EFFECTIVE DOWNSTREAM BOUNDARY CONDITIONS FOR INCOMPRESSIBLE NAVIER-STOKES EQUATIONS , 1994 .

[6]  L. E. Fraenkel,et al.  NAVIER-STOKES EQUATIONS (Chicago Lectures in Mathematics) , 1990 .

[7]  Emmanuel Grenier,et al.  Boundary Layers for Viscous Perturbations of Noncharacteristic Quasilinear Hyperbolic Problems , 1998 .

[8]  S. Biringen,et al.  Numerical Simulation of a Cylinder in Uniform Flow , 1996 .

[9]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[10]  C. Peskin The Fluid Dynamics of Heart Valves: Experimental, Theoretical, and Computational Methods , 1982 .

[11]  L. Sirovich,et al.  Modeling a no-slip flow boundary with an external force field , 1993 .

[12]  Khodor Khadra,et al.  Fictitious domain approach for numerical modelling of Navier–Stokes equations , 2000 .

[13]  C. Bruneau,et al.  Numerical simulation and analysis of the transition to turbulence , 1997 .

[14]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[15]  Luc Tartar,et al.  Topics in nonlinear analysis , 1978 .

[16]  Jean-Paul Caltagirone,et al.  NATURAL CONVECTION THROUGH PERIODIC POROUS MEDIA , 1990 .