Logarithmic ramifications of \'etale sheaves by restricting to curves
暂无分享,去创建一个
[1] Haoyu Hu,et al. Relative singular support and the semi-continuity of characteristic cycles for étale sheaves , 2017, 1702.06752.
[2] Yuri Yatagawa. Equality of Two Non-Logarithmic Ramification Filtrations of Abelianized Galois Group in Positive Characteristic , 2016, Documenta Mathematica.
[3] S. Saito,et al. Chow group of $0$-cycles with modulus and higher-dimensional class field theory , 2013, 1304.4400.
[4] Takeshi Saito. Wild ramification and the cotangent bundle , 2013, 1301.4632.
[5] Haoyu Hu,et al. Semi-continuity for total dimension divisors of \'etale sheaves , 2015, 1511.04866.
[6] Takeshi Saito. The characteristic cycle and the singular support of a constructible sheaf , 2015, 1510.03018.
[7] A. Beilinson. Constructible sheaves are holonomic , 2015, 1505.06768.
[8] Yifei Zhao. Maximally Frobenius-destabilized vector bundles over smooth algebraic curves , 2014, 1408.5117.
[9] Ivan Barrientos. Log ramification via curves in rank 1 , 2013, 1307.5814.
[10] H. Esnault,et al. A FINITENESS THEOREM FOR GALOIS REPRESENTATIONS OF FUNCTION FIELDS OVER FINITE FIELDS (AFTER DELIGNE) , 2012, 1208.0128.
[11] L. Xiao. On ramification filtrations and p-adic differential equations, II: mixed characteristic case , 2008, Compositio Mathematica.
[12] Takeshi Saito,et al. Ramification and cleanliness , 2010, 1007.3873.
[13] K. Kedlaya. Swan conductors for p-adic differential modules. II Global variation , 2007, Journal of the Institute of Mathematics of Jussieu.
[14] Takeshi Saito. Wild ramification and the characteristic cycle of an ℓ-adic sheaf , 2007, Journal of the Institute of Mathematics of Jussieu.
[15] L. Xiao. On ramification filtrations and $p$-adic differential modules, I: equal characteristic case , 2008, 0801.4962.
[16] I. Zhukov. Ramification of surfaces: sufficient jet order for wild jumps , 2002, math/0201071.
[17] Randall R. Holmes. Linear Representations of Finite Groups , 2008 .
[18] Y. André. Structure des connexions méromorphes formelles de plusieurs variables et semi-continuité de l’irrégularité , 2007, math/0701894.
[19] Johan P. Hansen,et al. INTERSECTION THEORY , 2011 .
[20] K. Kedlaya. Swan conductors for p-adic differential modules, I: A local construction , 2006, math/0611835.
[21] Ahmed Abbes,et al. Analyse Micro-Locale ℓ-Adique en Caractéristique p > 0 le Cas d’un Trait , 2006, math/0602285.
[22] Takeshi Saito. Ramification of local fields with imperfect residue fields III , 2000, math/0010103.
[23] Shigeki Matsuda. On the Swan conductor in positive characteristic , 1997 .
[24] A. D. de Jong. Smoothness , semi-stability and alterations , 1996 .
[25] Nicholas M. Katz,et al. Gauss Sums, Kloosterman Sums, and Monodromy Groups. (AM-116) , 1988 .
[26] J. Brylinski. Théorie du corps de classes de Kato et revêtements abéliens de surfaces , 1983 .
[27] 加藤 和也. A generalization of local class field theory by using K-groups I, II, III = K-群による局所類体論の一般化 , 1980 .
[28] Kazuya Kato. A generalization of local class field theory by using $K$-groups, II , 1977 .
[29] A. Grothendieck. Étude locale des schémas et des morphismes de schémas , 1964 .