Towards Conversational OLAP

The democratization of data access and the adoption of OLAP in scenarios requiring hand-free interfaces push towards the creation of smart OLAP interfaces. In this paper, we envisage a conversational framework specifically devised for OLAP applications. The system converts natural language text in GPSJ (Generalized Projection, Selection and Join) queries. The approach relies on an ad-hoc grammar and a knowledge base storing multidimensional metadata and cubes values. In case of ambiguous or incomplete query description, the system is able to obtain the correct query either through automatic inference or through interactions with the user to disambiguate the text. Our tests show very promising results both in terms of effectiveness and efficiency.

[1]  Mukund Sundararajan,et al.  Analyza: Exploring Data with Conversation , 2017, IUI.

[2]  Kaizhong Zhang,et al.  Simple Fast Algorithms for the Editing Distance Between Trees and Related Problems , 1989, SIAM J. Comput..

[3]  Marie-Aude Aufaure,et al.  QUASL: A framework for question answering and its Application to business intelligence , 2013, IEEE 7th International Conference on Research Challenges in Information Science (RCIS).

[4]  Matteo Golfarelli,et al.  Augmented Business Intelligence , 2019, DOLAP.

[5]  Patrick Marcel,et al.  Interest-based recommendations for business intelligence users , 2019, Inf. Syst..

[6]  Sherif Sakr,et al.  Automated Machine Learning: State-of-The-Art and Open Challenges , 2019, ArXiv.

[7]  Donald Kossmann,et al.  SODA: Generating SQL for Business Users , 2012, Proc. VLDB Endow..

[8]  Lorena Etcheverry,et al.  QB4OLAP: A Vocabulary for OLAP Cubes on the Semantic Web , 2012, COLD.

[9]  Immanuel Trummer,et al.  A Holistic Approach for Query Evaluation andResult Vocalization in Voice-Based OLAP , 2019, SIGMOD Conference.

[10]  Matteo Golfarelli,et al.  A collaborative filtering approach for recommending OLAP sessions , 2015, Decis. Support Syst..

[11]  Mihai Surdeanu,et al.  The Stanford CoreNLP Natural Language Processing Toolkit , 2014, ACL.

[12]  Ramanathan V. Guha,et al.  User Modeling for a Personal Assistant , 2015, WSDM.

[13]  NAVID YAGHMAZADEH,et al.  SQLizer: query synthesis from natural language , 2017, Proc. ACM Program. Lang..

[14]  Fei Li,et al.  Understanding Natural Language Queries over Relational Databases , 2016, SGMD.

[15]  Mitesh M. Khapra,et al.  Towards Building Large Scale Multimodal Domain-Aware Conversation Systems , 2017, AAAI.

[16]  Umar Farooq Minhas,et al.  ATHENA: An Ontology-Driven System for Natural Language Querying over Relational Data Stores , 2016, Proc. VLDB Endow..

[17]  Carsten Binnig,et al.  Making the Case for Query-by-Voice with EchoQuery , 2016, SIGMOD Conference.

[18]  Abdul Quamar,et al.  Natural Language Querying of Complex Business Intelligence Queries , 2019, SIGMOD Conference.

[19]  Ashish Gupta,et al.  Aggregate-Query Processing in Data Warehousing Environments , 1995, VLDB.

[20]  John C. Beatty,et al.  On the relationship between LL(1) and LR(1) grammars , 1982, JACM.

[21]  Abraham Bernstein,et al.  A comparative survey of recent natural language interfaces for databases , 2019, The VLDB Journal.

[22]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.