On an extension of the Hardy-Hilbert theorem
暂无分享,去创建一个
A weighted Hardy-Hilbert’s inequality with the parameter λ of form \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\sum\limits_{m = 1}^\infty {\sum\limits_{n = 1}^\infty {\frac{{a_m b_n }}{{(m + n)^\lambda }}} < B^* (\lambda )\left( {\sum\limits_{n = 1}^\infty {n^{1 - \lambda } a_{a_n }^p } } \right)^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} \left( {\sum\limits_{n = 1}^\infty {n^{1 - \lambda } b_n^q } } \right)^q }$$ \end{document} is established by introducing two parameters s and λ, where \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcom...
[1] Y. Bi-cheng. On New Generalizations of Hilbert's Inequality☆ , 2000 .
[2] G. Mingzhe. NOTE A Note on the Hardy–Hilbert Inequality , 1996 .
[3] Bicheng Yang,et al. On the extended Hilbert’s inequality , 1998 .