Two-photon photoemission spectroscopy of TiO2(110) surfaces modified by defects and O2 or H2O adsorbates

Two-photon photoemission (2PP) spectra of TiO2s110d surfaces are measured for the nearly perfect surface, and surfaces modified by introduction of defects and adsorbed molecules. Defects are generated on nearly perfect surfaces by three methods: electron irradiation, annealing in vacuum, and Ar + sputtering. Nearly perfect or damaged surfaces can be further modified by adsorption of O 2 or H2O molecules. 2PP spectroscopy is used to systematically investigate the work function change due to the presence of defects or adsorbates. 2PP spectroscopy detects both surface and bulk oxygen vacancy defects. We find from the results on oxygen adsorption that oxygen vacancies created by electron irradiation are localized on the surface and may be removed by O2 adsorption at 100 K. The surface defects are substantially different from those created by annealing or by ion sputtering where vacancies in the subsurface region are proposed. We find that O2 acts as an acceptor molecule on surface defect states whereas H2O acts as a donor molecule. From simulation of the work function change as a function of dosage, the dipole moment of H2O adsorbed on TiO2 surface is derived to be 0.5 D positive outward. We also find an unoccupied electronic state 2.45 eV above the Fermi level that appears at submonolayer coverage of H2O, which we tentatively assign to charge transfer from surface titanium ions to the surface-adsorbed H2O molecules or OH ligands.

[1]  M. Schmeits,et al.  Electronic structure of ideal TiO2(110), TiO2(001), and TiO2(100) surfaces , 1984 .

[2]  Alexei M. Tyryshkin,et al.  The Influence of the Bulk Reduction State on the Surface Structure and Morphology of Rutile TiO2(110) Single Crystals , 2000 .

[3]  A. Cuthbert,et al.  Hormone action and the levels of cyclic AMP and prostaglandins in the toad bladder. , 1972, Nature: New biology.

[4]  Charles T. Campbell,et al.  The interaction of H2O with a TiO2(110) surface , 1994 .

[5]  M. Kuhn,et al.  Intrinsic defects on a TiO2(110)(1×1) surface and their reaction with oxygen: a scanning tunneling microscopy study , 1998 .

[6]  Richard L. Kurtz,et al.  Synchrotron radiation studies of H2O adsorption on TiO2(110) , 1989 .

[7]  Weida,et al.  Real-time observation of adsorbate atom motion above a metal surface , 2000, Science.

[8]  Arun S. Mujumdar,et al.  Introduction to Surface Chemistry and Catalysis , 1994 .

[9]  Donald R. Baer,et al.  Creation of variable concentrations of defects on TiO2(110) using low-density electron beams , 1994 .

[10]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[11]  P. Feibelman,et al.  Ion desorption by core-hole Auger decay , 1978 .

[12]  Michael A. Henderson,et al.  An HREELS and TPD study of water on TiO2(110): the extent of molecular versus dissociative adsorption , 1996 .

[13]  C. A. Barlow,et al.  Work Function Change on Monolayer Adsorption , 1963 .

[14]  A. See,et al.  Inverse photoemission study of the defective TiO2(110) surface , 1992 .

[15]  M. Engelhard,et al.  Comparative second harmonic generation and X-ray photoelectron spectroscopy studies of the UV creation and O2 healing of Ti3+ defects on (110) rutile TiO2 surfaces , 1995 .

[16]  G. Ertl,et al.  Dynamics of Electron-Induced Manipulation of Individual CO Molecules on Cu(111) , 1998 .

[17]  J. T. Ranney,et al.  The Surface Science of Metal Oxides , 1995 .

[18]  M. Wolf,et al.  Structure and dynamics of excited electronic states at the adsorbate/metal interface: C6F6/Cu(111). , 2000, Faraday discussions.

[19]  R. Egdell,et al.  Electronic excitations at oxygen deficient TiO2(110) surfaces: A study by EELS , 1987 .

[20]  Michael Grätzel The Artificial Leaf, Molecular Photovoltaics Achieve Efficient Generation of Electricity from Sunlight , 1991 .

[21]  M. Lazzeri,et al.  Oxygen vacancy mediated adsorption and reactions of molecular oxygen on theTiO2(110)surface , 2003 .

[22]  T. Fauster,et al.  Time-resolved coherent photoelectron spectroscopy of quantized electronic states on metal surfaces , 1997 .

[23]  Akira Fujishima,et al.  Bactericidal and Detoxification Effects of TiO2 Thin Film Photocatalysts , 1998 .

[24]  K. Hashimoto,et al.  Reversible wettability control of TiO2 surface by light irradiation , 2002 .

[25]  Tang,et al.  Urbach tail of anatase TiO2. , 1995, Physical review. B, Condensed matter.

[26]  B. Hammer,et al.  Adsorption, diffusion, and dissociation of molecular oxygen at defected TiO2(110): a density functional theory study. , 2004, The Journal of chemical physics.

[27]  C. Peden,et al.  Evidence for oxygen adatoms on TiO2(110) resulting from O2 dissociation at vacancy sites , 1998 .

[28]  Eiichi Kojima,et al.  Light-induced amphiphilic surfaces , 1997, Nature.

[29]  C. Peden,et al.  Interaction of Molecular Oxygen with the Vacuum-Annealed TiO2(110) Surface: Molecular and Dissociative Channels , 1999 .

[30]  Andrew Zangwill Physics at Surfaces , 1988 .

[31]  T. Fauster,et al.  LIFETIMES OF IMAGE-POTENTIAL STATES ON CU(100) AND AG(100) MEASURED BY FEMTOSECOND TIME-RESOLVED TWO-PHOTON PHOTOEMISSION , 1998 .

[32]  Renald Schaub,et al.  Oxygen-Mediated Diffusion of Oxygen Vacancies on the TiO2(110) Surface , 2002, Science.

[33]  P. Lindan,et al.  Multilayer water adsorption on rutile TiO2(110): A first-principles study , 2003 .

[34]  K. Bange,et al.  Water adsorption on bromine-covered copper single crystal surfaces , 1983 .

[35]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[36]  H. Petek,et al.  Surface Femtochemistry: Frustrated Desorption of Alkali Atoms from Noble Metals , 2001 .

[37]  G. Somorjai,et al.  Low energy electron diffraction and electron spectroscopy studies of the clean (110) and (100) titanium dioxide (rutile) crystal surfaces , 1977 .

[38]  Philip J. D. Lindan,et al.  Towards a first-principles picture of the oxide–water interface , 2003 .

[39]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[40]  H. Petek,et al.  Hot-electron dynamics at Cu(100), Cu(110), and Cu(111) surfaces:mComparison of experiment with Fermi-liquid theory , 1997 .

[41]  J. Yates,et al.  THE ADSORPTION AND PHOTODESORPTION OF OXYGEN ON THE TIO2(110) SURFACE , 1995 .

[42]  M. Weinelt TOPICAL REVIEW: Time-resolved two-photon photoemission from metal surfaces , 2002 .

[43]  Persson,et al.  Work function, optical absorption, and second-harmonic generation from alkali-metal atoms adsorbed on metal surfaces. , 1989, Physical review. B, Condensed matter.

[44]  H. Onishi,et al.  Adsorption of CH3OH, HCOOH and SO2 on TiO2(110) and stepped TiO2(441) surfaces , 1988 .

[45]  X. Zhu Electron transfer at molecule-metal interfzces: a two-photon photoemission study. , 2002, Annual review of physical chemistry.

[46]  W. Göpel,et al.  Surface defects of TiO2(110): A combined XPS, XAES AND ELS study , 1984 .

[47]  H. Petek,et al.  Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals , 1997 .

[48]  A. Michaelides,et al.  General model for water monomer adsorption on close-packed transition and noble metal surfaces. , 2003, Physical review letters.

[49]  W. H. Weinberg,et al.  The adsorption of water on the reconstructed Ir(110)-(1 × 2) surface , 1981 .

[50]  T. Madey,et al.  TITANIUM AND REDUCED TITANIA OVERLAYERS ON TITANIUM DIOXIDE (110) , 1995 .

[51]  Akira Fujishima,et al.  Transparent Superhydrophobic Thin Films with Self-Cleaning Properties , 2000 .

[52]  Peter J. Feibelman,et al.  Reinterpretation of electron-stimulated desorption data from chemisorption systems , 1978 .