Hydraulic head interpolation in an aquifer unit using ANFIS and Ordinary Kriging

In this study, Ordinary Kriging (ok), and Adaptive Neuro Fuzzy based Inference System (anfis) are evaluated for assessing hydraulic head distribution in an aquifer unit covering 40 km2. Cartesian coordinates of the samples were used as inputs of anfis. Calibrated models are used to interpolate the hydraulic head distribution on a 50 m square - grid. Both simulations have realistic pattern (R2 > 0.97) even if ok performs slightly better than anfis at sampling location. The two methods capture different patterns. The Comparison of the two distributions allows for identifying area of estimate uncertainty, what can be used to improve the sampling network.

[1]  J. Goguen L-fuzzy sets , 1967 .

[2]  J. Chilès,et al.  Geostatistics: Modeling Spatial Uncertainty , 1999 .

[3]  M. Razack,et al.  Modeling daily discharge responses of a large karstic aquifer using soft computing methods: Artificial neural network and neuro-fuzzy , 2010 .

[4]  Nicolaos Theodossiou,et al.  Evaluation and optimisation of groundwater observation networks using the Kriging methodology , 2006, Environ. Model. Softw..

[5]  J.-S.R. Jang,et al.  Input selection for ANFIS learning , 1996, Proceedings of IEEE 5th International Fuzzy Systems.

[6]  Valentina Krysanova,et al.  Automatic fuzzy-rule assessment and its application to the modelling of nitrogen leaching for large regions , 2003, Soft Comput..

[7]  K. P. Sudheer,et al.  A neuro-fuzzy computing technique for modeling hydrological time series , 2004 .

[8]  Y. Hong,et al.  Hydrological modeling using a dynamic neuro-fuzzy system with on-line and local learning algorithm , 2009 .

[9]  Emmanuel Ledoux,et al.  Assessment of nitrate pollution in the Grand Morin aquifers (France): combined use of geostatistics and physically based modeling. , 2007, Environmental pollution.

[10]  Ahmed El-Shafie,et al.  A neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high dam , 2007 .

[11]  Liang-Cheng Chang,et al.  Application of Optimal Control and Fuzzy Theory for Dynamic Groundwater Remediation Design , 2009 .

[12]  Emmanuel Ledoux,et al.  Modeling nitrate fluxes at the catchment scale using the integrated tool CAWAQS. , 2007, The Science of the total environment.

[13]  François Anctil,et al.  A neural network experiment on the simulation of daily nitrate-nitrogen and suspended sediment fluxes from a small agricultural catchment , 2009 .

[14]  Chuntian Cheng,et al.  A comparison of performance of several artificial intelligence , 2009 .

[15]  Rafael Marcé,et al.  A neuro‐fuzzy modeling tool to estimate fluvial nutrient loads in watersheds under time‐varying human impact , 2004 .

[16]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[17]  Timothy C. Coburn,et al.  Geostatistics for Natural Resources Evaluation , 2000, Technometrics.

[18]  Yue Sun,et al.  Comparison of interpolation methods for depth to groundwater and its temporal and spatial variations in the Minqin oasis of northwest China , 2009, Environ. Model. Softw..

[19]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[20]  M. Firat,et al.  Comparison of Artificial Intelligence Techniques for river flow forecasting , 2008 .

[21]  Mario Chica-Olmo,et al.  Using Semivariogram Parameter Uncertainty in Hydrogeological Applications , 2009, Ground water.

[22]  C Logan,et al.  On the kriging of water table elevations using collateral information from a digital elevation model , 2002 .

[23]  Gwo-Fong Lin,et al.  A spatial interpolation method based on radial basis function networks incorporating a semivariogram model , 2004 .

[24]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[25]  Mohsen Nasseri,et al.  Cluster-based ordinary kriging of piezometric head in West Texas/New Mexico - Testing of hypothesis , 2008 .

[26]  Chuen-Tsai Sun,et al.  Neuro-fuzzy modeling and control , 1995, Proc. IEEE.

[27]  Philippe Pasquier,et al.  Hydraulic head field estimation using kriging with an external drift: A way to consider conceptual model information , 2008 .

[28]  Tammo S. Steenhuis,et al.  Geostatistical investigation into the temporal evolution of spatial structure in a shallow water table , 2005 .

[29]  Hitoshi Tanaka,et al.  Developing a hybrid multi‐model for peak flood forecasting , 2009 .

[30]  A. Maritan,et al.  On the space‐time evolution of a cholera epidemic , 2008 .

[31]  Mahmud Güngör,et al.  Hydrological time‐series modelling using an adaptive neuro‐fuzzy inference system , 2008 .

[32]  Denis Marcotte,et al.  A Simple Approach to Account for Radial Flow and Boundary Conditions When Kriging Hydraulic Head Fields for Confined Aquifers , 2003 .

[33]  Michael Edward Hohn,et al.  An Introduction to Applied Geostatistics: by Edward H. Isaaks and R. Mohan Srivastava, 1989, Oxford University Press, New York, 561 p., ISBN 0-19-505012-6, ISBN 0-19-505013-4 (paperback), $55.00 cloth, $35.00 paper (US) , 1991 .

[34]  András Bárdossy,et al.  The use of fuzzy rules for the description of elements of the hydrological cycle , 1996 .

[35]  Majid Kholghi,et al.  Comparison of Groundwater Level Estimation Using Neuro-fuzzy and Ordinary Kriging , 2009 .

[36]  Mahmud Güngör,et al.  River flow estimation using adaptive neuro fuzzy inference system , 2007, Math. Comput. Simul..

[37]  M. A. Yurdusev,et al.  Adaptive neuro fuzzy inference system approach for municipal water consumption modeling: An application to Izmir, Turkey , 2009 .

[38]  N. Jeannée,et al.  Estimating transmissivity fields and their influence on flow and transport: The case of Champagne mounts , 2008 .

[39]  Kenneth G. Renard,et al.  A brief background on the U.S. Department of Agriculture Agricultural Research Service Walnut Gulch Experimental Watershed , 2008 .

[40]  Mustafa M. Aral,et al.  Aquifer parameter and zone structure estimation using kernel-based fuzzy c-means clustering and genetic algorithm , 2007 .

[41]  Li-Chiu Chang,et al.  Intelligent control for modeling of real‐time reservoir operation, part II: artificial neural network with operating rule curves , 2005 .

[42]  J. Triantafilis,et al.  Mapping Water Table Depth Using Geophysical and Environmental Variables , 2009, Ground water.

[43]  Fi-John Chang,et al.  Adaptive neuro-fuzzy inference system for prediction of water level in reservoir , 2006 .

[44]  Mahmut Firat,et al.  Comparative analysis of fuzzy inference systems for water consumption time series prediction. , 2009 .

[45]  Bart Muys,et al.  Regionalisation of the parameters of a hydrological model: Comparison of linear regression models with artificial neural nets , 2006 .