The Akaike information criterion in DCE-MRI: Does it improve the haemodynamic parameter estimates?
暂无分享,去创建一个
Steven Sourbron | Michael Ingrisch | Robert Luypaert | Johan de Mey | S. Sourbron | M. Ingrisch | R. Luypaert | J. de Mey
[1] W P Dillon,et al. Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. , 2000, AJNR. American journal of neuroradiology.
[2] L. Breiman. The Little Bootstrap and other Methods for Dimensionality Selection in Regression: X-Fixed Prediction Error , 1992 .
[3] Michael Brady,et al. Extracting and visualizing physiological parameters using dynamic contrast-enhanced magnetic resonance imaging of the breast , 2005, Medical Image Anal..
[4] Maximilian Reiser,et al. Quantification of cerebral blood flow, cerebral blood volume, and blood–brain‐barrier leakage with DCE‐MRI , 2009, Magnetic resonance in medicine.
[5] R. Lucht,et al. Microcirculation and microvasculature in breast tumors: Pharmacokinetic analysis of dynamic MR image series , 2004, Magnetic resonance in medicine.
[6] S. Sourbron,et al. A comparison of tracer kinetic models for T1‐weighted dynamic contrast‐enhanced MRI: Application in carcinoma of the cervix , 2010, Magnetic resonance in medicine.
[7] Steven Sourbron,et al. Model Selection in Dynamic Contrast Enhanced MRI: The Akaike Information Criterion , 2009 .
[8] C. Patlak,et al. Graphical Evaluation of Blood-to-Brain Transfer Constants from Multiple-Time Uptake Data. Generalizations , 1985, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.
[9] M. Knopp,et al. Estimating kinetic parameters from dynamic contrast‐enhanced t1‐weighted MRI of a diffusable tracer: Standardized quantities and symbols , 1999, Journal of magnetic resonance imaging : JMRI.
[10] Robert Luypaert,et al. Validity of perfusion parameters obtained using the modified Tofts model: A simulation study , 2011, Magnetic resonance in medicine.
[11] T W Redpath,et al. The use of the Levenberg–Marquardt curve-fitting algorithm in pharmacokinetic modelling of DCE-MRI data , 2005, Physics in medicine and biology.
[12] H. Akaike. A new look at the statistical model identification , 1974 .
[13] David R. Anderson,et al. Multimodel Inference , 2004 .
[14] Steven P Sourbron,et al. On the scope and interpretation of the Tofts models for DCE‐MRI , 2011, Magnetic resonance in medicine.
[15] R Luypaert,et al. Error estimation for perfusion parameters obtained using the two-compartment exchange model in dynamic contrast-enhanced MRI: a simulation study , 2010, Physics in medicine and biology.
[16] Stephen L. Brown,et al. Model Selection in Magnetic Resonance Imaging Measurements of Vascular Permeability: Gadomer in a 9L Model of Rat Cerebral Tumor , 2006, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.
[17] G. Brix,et al. Pharmacokinetic analysis of tissue microcirculation using nested models: multimodel inference and parameter identifiability. , 2009, Medical physics.
[18] Frédérique Frouin,et al. New criteria for assessing fit quality in dynamic contrast‐enhanced T1‐weighted MRI for perfusion and permeability imaging , 2005, Magnetic resonance in medicine.