Global stability of nonlinear congestion control with time-delay

[1]  Fernando Paganini,et al.  Congestion control for high performance, stability, and fairness in general networks , 2005, IEEE/ACM Transactions on Networking.

[2]  H. Antosiewicz,et al.  Differential Equations: Stability, Oscillations, Time Lags , 1967 .

[3]  Steven H. Low,et al.  Optimization flow control—I: basic algorithm and convergence , 1999, TNET.

[4]  J. Hale,et al.  Stability of Motion. , 1964 .

[5]  E. M. Wright Linear difference-differential equations , 1948, Mathematical Proceedings of the Cambridge Philosophical Society.

[6]  M. Arcak,et al.  L/sub p/ stability and delay robustness of network flow control , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[7]  Fernando Paganini,et al.  A new TCP/AQM for stable operation in fast networks , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).

[8]  Frank Kelly,et al.  Rate control for communication networks: shadow prices, proportional fairness and stability , 1998, J. Oper. Res. Soc..

[9]  Donald F. Towsley,et al.  A control theoretic analysis of RED , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[10]  Glenn Vinnicombe,et al.  ON THE STABILITY OF NETWORKS OPERATING TCP-LIKE CONGESTION CONTROL , 2002 .

[11]  Fernando Paganini,et al.  A global stability result in network flow control , 2002, Syst. Control. Lett..

[12]  V. Lakshmikantham,et al.  Differential and integral inequalities : theory and applications , 1969 .

[13]  Erik I. Verriest,et al.  Stability and Control of Time-delay Systems , 1998 .

[14]  Fernando Paganini,et al.  Global stability with time-delay of a primal-dual congestion control , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[15]  F. Paganini,et al.  Global stability with time-delay in network congestion control , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[16]  R. Srikant,et al.  Global stability of congestion controllers for the Internet , 2003, IEEE Trans. Autom. Control..

[17]  Tom Kelly,et al.  Scalable TCP: improving performance in highspeed wide area networks , 2003, CCRV.

[18]  R. Srikant,et al.  A time scale decomposition approach to adaptive ECN marking , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[19]  Ramesh Johari,et al.  End-to-end congestion control for the internet: delays and stability , 2001, TNET.

[20]  R. Srikant,et al.  Stable, scalable, fair congestion control and AQM schemes that achieve high utilization in the Internet , 2003, IEEE Trans. Autom. Control..

[21]  Jack K. Hale,et al.  Introduction to Functional Differential Equations , 1993, Applied Mathematical Sciences.

[22]  Fernando Paganini,et al.  Scalable laws for stable network congestion control , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[23]  John T. Wen,et al.  A unifying passivity framework for network flow control , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).