Insights on the framework of the Carajás Province, Amazonian Craton, Brazil, and on the three-dimensional shape of the Carajás Basin, based on gravity data

This work interprets and models aerogravity data surveyed in the Carajas Province (also Carajas Domain) - Eastern Amazonian Craton, with the purpose of understanding the deep tectonic framework of this region and sketching the three-dimensional shape of the Carajas Basin. Initially, a comparison was made between the gravity signatures of the Carajas Domain in relation to those of the Rio Maria, Bacaja and Iriri-Xingu domains. This comparison demonstrates that the gravity anomaly configuration of the Rio Maria Domain is similar to the tectonic pattern observed in ancient Archean terranes (dome-and-keel geometry) elsewhere, while the gravity anomaly arrangement of the Carajas Domain forms positive gravity belts suggesting the deposition of volcano-sedimentary rocks in elongated basins. The gravity pattern observed at the boundary between the Carajas and Bacaja domains has similarities with the shape observed in continental collision belts from several continents. The Iriri-Xingu Domain, unlike the other three domains, presents an expressive negative gravity signature. In the Carajas Basin, I observed a strong correlation between positive gravity anomalies and their maximum horizontal gradient with metavolcano-sedimentary sequences. Modeling of the positive anomalies was performed using the forward method, which calculates the 2.5D geometry of bodies associated with the anomalies. The results demonstrate that N-S intrabasinal highs divide the basin into three distinct compartments: East, Central, and West. Internally, these compartments are structured in down-dropped and up-dropped blocks with depths ranging from 500 to 3,700 m. These results were compared to the three-dimensional geological models proposed for the Carajas Basin. This comparison suggests that the early phases of the evolution of this basin are characterized by the formation of a rift structured in grabens (down-dropped blocks) and horsts (up-dropped blocks), whose bounding faults, some of them reactivated as shear zones, facilitated and amplified the development of folds in the late phases of tectonic inversion of the basin.

[1]  F. Tavares,et al.  The multistage tectonic evolution of the northeastern Carajás Province, Amazonian Craton, Brazil: Revealing complex structural patterns , 2018, Journal of South American Earth Sciences.

[2]  C. Clark,et al.  Subduction or sagduction? Ambiguity in constraining the origin of ultramafic–mafic bodies in the Archean crust of NW Scotland , 2016 .

[3]  A. Mandal,et al.  Sub-surface structure of a craton–mobile belt interface: Evidence from geological and gravity studies across the Rengali Province–Eastern Ghats Belt boundary, eastern India , 2015 .

[4]  P. Betts,et al.  Early tectonic evolution of the Thomson Orogen in Queensland inferred from constrained magnetic and gravity data , 2015 .

[5]  Mark Jessell,et al.  A geophysically constrained litho-structural analysis of the Eburnean greenstone belts and associated granitoid domains, Burkina Faso, West Africa , 2011 .

[6]  M. D. Silva,et al.  Modelos de depósitos de cobre do Brasil e sua resposta ao intemperismo , 2010 .

[7]  P. Barbey,et al.  STRUCTURE, PETROLOGY, GEOCHEMISTRY AND ZIRCON U/Pb AND Pb/Pb GEOCHRONOLOGY OF THE SYNKINEMATIC ARCHEAN (2.7 Ga) A-TYPE GRANITES FROM THE CARAJÁS METALLOGENIC PROVINCE, NORTHERN BRAZIL , 2009 .

[8]  R. T. Ranganai,et al.  THE GEOLOGY AND STRUCTURE OF THE MASVINGO GREENSTONE BELT AND ADJACENT GRANITE PLUTONS FROM GEOPHYSICAL DATA, ZIMBABWE CRATON , 2009 .

[9]  M. Oliveira,et al.  Mesoarchean sanukitoid rocks of the Rio Maria Granite-Greenstone Terrane, Amazonian craton, Brazil , 2009 .

[10]  D. Groves,et al.  Metallogenesis of the Carajás Mineral Province, Southern Amazon Craton, Brazil: Varying styles of Archean through Paleoproterozoic to Neoproterozoic base- and precious-metal mineralisation , 2008 .

[11]  K. Karlstrom,et al.  Assembly, configuration, and break-up history of Rodinia: A synthesis , 2008 .

[12]  H. Silvennoinen,et al.  3D structure and physical properties of the Kuhmo Greenstone Belt (eastern Finland): Constraints from gravity modelling and seismic data and implications for the tectonic setting , 2007 .

[13]  R. Dall’Agnol,et al.  Oxidized, magnetite-series, rapakivi-type granites of Carajás, Brazil: Implications for classification and petrogenesis of A-type granites , 2007 .

[14]  W. Roest,et al.  Gold-bearing fault zones related to Late Archean orogenic folding of upper and middle crust in the Abitibi granite-greenstone belt, Ontario , 2006 .

[15]  J. Seoane,et al.  Structure and iron mineralisation of the Carajás Province , 2006 .

[16]  R. Dall’Agnol,et al.  Petrogenesis of the Paleoproterozoic rapakivi A-type granites of the Archean Carajás metallogenic province, Brazil , 2005 .

[17]  D. Groves,et al.  Geology and SHRIMP U-Pb Geochronology of the Igarapé Bahia Deposit, Carajás Copper-Gold Belt, Brazil: An Archean (2.57 Ga) Example of Iron-Oxide Cu-Au-(U-REE) Mineralization , 2005 .

[18]  W. Roest,et al.  Insights on Archean continental geodynamics from gravity modelling of granite–greenstone terranes , 2004 .

[19]  Joel Buenano Macambira O ambiente deposicional da Formação Carajás e uma proposta de modelo evolutivo para a Bacia Grão Pará , 2003 .

[20]  João B. C. Silva,et al.  Practical applications of uniqueness theorems in gravimetry: Part I—Constructing sound interpretation methods , 2002 .

[21]  João B. C. Silva,et al.  Practical applications of uniqueness theorems in gravimetry: Part II—Pragmatic incorporation of concrete geologic information , 2002 .

[22]  P. V. Keken,et al.  Middle Archean continent formation by crustal delamination , 2001 .

[23]  E. Atekwana,et al.  Gravity evidence for a larger Limpopo Belt in southern Africa and geodynamic implications , 2001 .

[24]  M. A. Dardenne,et al.  Metalogênese do Brasil , 2001 .

[25]  R. V. L. Pinheiro,et al.  EVOLUÇÃO TECTONOESTRATIGRÁFICA DOS SISTEMAS TRANSCORRENTES CARAJÁS E CINZEIRO, CINTURÃO ITACAIÚNAS, NA BORDA LESTE DO CRATON AMAZÔNICO, PARÁ , 2000 .

[26]  P. Wellman Upper crust of the Pilbara Craton, Australia; 3D geometry of a granite/greenstone terrain , 2000 .

[27]  F. Tallarico,et al.  THE SERRA LESTE SEDIMENT-HOSTED AU-(PD-PT) MINERALIZATION, CARAJÁS PROVINCE , 2000 .

[28]  A. Fallick,et al.  The lode-porphyry model as dediced from the Camaru mesothermal granitoid-hosted gold deposit, southern Pará, Brazil , 1998 .

[29]  D. Lowry The evolving continents (3rd edition) , 1997 .

[30]  Edésio Maria Buenano Macambira,et al.  São Félix do Xingu: folha SB.22-Y-B , 1997 .

[31]  V. Diella,et al.  PGE and PGM in the Luanga mafic-ultramafic intrusion in Serra dos Carajás (Pará State, Brazil) , 1995 .

[32]  R. Dall’Agnol,et al.  Proterozoic anorogenic magmatism in the Central Amazonian Province, amazonian araton: Geochronological, petrological and geochemical aspects , 1994 .

[33]  B. Figueiredo,et al.  O cinturão cupro-aurifero de Carajas, Brasil , 1993 .

[34]  Z. Lindenmayer,et al.  U-Pb geochronology of Archean magmatism and basement reactivation in the Carajás area, Amazon shield, Brazil , 1991 .

[35]  O. Leonardos,et al.  Gold mineralization in the Diadema shear belt, northern Brazil , 1990 .

[36]  G. Karner,et al.  Gravity anomalies and flexure of the lithosphere at mountain ranges , 1983 .

[37]  M. Mukhopadhyay,et al.  Geophysics of proposed proterozoic sutures in Canada , 1983 .

[38]  Y. Hasui,et al.  Brazilian structural provinces: An introduction , 1981 .

[39]  B. Windley The evolving continents , 1977 .

[40]  V. R. Beisiegel,et al.  GEOLOGIA E RECURSOS MINERAIS DA SERRA DOS CARAJÁS , 1973 .