Promising emission behavior in Pr 3+ /In selenide-chalcogenide-glass small-core step index fiber (SIF)

Selenide-chalcogenide glass, small-core, step-index fiber (SIF), core-doped with Pr3+: 9.51 × 1024 ions m−3 (500 ppmw) is fabricated for the first time with indium to help solubilize Pr3+. Core diameters of 20 or 40 μm are confirmed using scanning electron microscopy and near-field imaging; fibre numerical aperture is ∼0.4. Optical loss is ≥ 4.9 dB m−1 across the 3–9 μm mid-infrared (MIR) spectral range. On pumping at 1.55 μm or 2.013 μm, the SIFs give broad MIR emission across 3.5–6 μm assigned to 3H6 → 3H5 and 3H5 → 3H4. The Pr3+ emission-lifetime at 4.7 μm decreases from bulk-glass (10.1 ± 0.3 ms), to intermediately processed fiber (8.10 ± 0.5 ms) to SIF (7.1 ± 0.5 ms) induced by the processing. On end-pumping SIFs at 2.013 μm, the output pump-power and emission intensity at 4.7 μm became sub-linear and super-linear, respectively, suggesting MIR excited-state saturation is occurring.

[1]  E. Barney,et al.  Towards mid-infrared fiber-lasers: rare earth ion doped, indium-containing, selenide bulk glasses and fiber , 2014, Photonics West - Biomedical Optics.

[2]  R. Metson Holmium , 1996 .

[3]  Angela B. Seddon Biomedical Applications in Probing Deep Tissue Using Mid-Infrared Supercontinuum Optical Biopsy , 2017 .

[4]  Trevor M. Benson,et al.  Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass , 2015 .

[5]  Günter Steinmeyer,et al.  Supercontinua: Entering the mid-infrared , 2014 .

[6]  Trevor M. Benson,et al.  Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+ , 2012 .

[7]  Carl W. Ponader,et al.  Clustering of rare earths in GeAs sulfide glass , 2002 .

[8]  Trevor M. Benson,et al.  Crystallization behavior of Dy 3+-doped selenide glasses , 2011 .

[9]  Leslie Brandon Shaw,et al.  Rare-earth-doped selenide glass optical sources , 1998, Technical Digest. Summaries of Papers Presented at the Conference on Lasers and Electro-Optics. Conference Edition. 1998 Technical Digest Series, Vol.6 (IEEE Cat. No.98CH36178).

[10]  L. G Aio,et al.  Refractive index of chalcogenide glasses over a wide range of compositions , 1978 .

[11]  G. Dieke,et al.  The Spectra of the Doubly and Triply Ionized Rare Earths , 1963 .

[12]  Yi Yu,et al.  High brightness 2.2-12 μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber , 2016 .

[13]  S. Jackson Towards high-power mid-infrared emission from a fibre laser , 2012, Nature Photonics.

[14]  Trevor M. Benson,et al.  Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre , 2014, Nature Photonics.

[15]  Slawomir Sujecki,et al.  Progress in rare-earth-doped mid-infrared fiber lasers. , 2010, Optics express.

[16]  Ole Bang,et al.  Mid-infrared Spectroscopy/Bioimaging: Moving toward MIR optical biopsy , 2016 .

[17]  Paul Leonard Gabbott,et al.  Principles and applications of thermal analysis , 2008 .

[18]  Joon Tae Ahn,et al.  Mid-infrared (3.5–5.5 μm) spectroscopic properties of Pr3+-doped Ge–Ga–Sb–Se glasses and optical fibers , 2008 .

[19]  T. King,et al.  Holmium, praseodymium-doped fluoride fiber laser operating near 2.87 /spl mu/m and pumped with a Nd:YAG laser , 2005, Journal of Lightwave Technology.

[20]  D Furniss,et al.  Superior photoluminescence (PL) of Pr³⁺-In, compared to Pr³⁺-Ga, selenide-chalcogenide bulk glasses and PL of optically-clad fiber. , 2014, Optics express.

[21]  Angela B. Seddon,et al.  Mid‐infrared (IR) – A hot topic: The potential for using mid‐IR light for non‐invasive early detection of skin cancer in vivo , 2013 .

[22]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[23]  Virginie Nazabal,et al.  Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)(65) bulk glasses and fibers , 2013 .

[24]  Richard S. Quimby,et al.  Multiphonon energy gap law in rare-earth doped chalcogenide glass , 2003 .

[25]  Jesper Munch,et al.  Mid-infrared fiber lasers at and beyond 3.5 μm using dual-wavelength pumping. , 2014, Optics letters.

[26]  L. A. Ketkova,et al.  Preparation of high-purity Pr3+ doped Ge–As–Se–In–I glasses for active mid-infrared optics , 2016 .

[27]  S. Kasap,et al.  The influence of radiation trapping on spectra and measured lifetimes of 4F9/2 -4I15/2, 4I9/2 -4I15/2, 4I11/2 -4I15/2 and 4I13/2 -4I15/2 emission bands in GeGaS glasses doped with erbium , 2016, 2016 18th International Conference on Transparent Optical Networks (ICTON).

[28]  Virginie Nazabal,et al.  Development of Praseodymium doped fluoride waveguide , 2012, Photonics West - Optoelectronic Materials and Devices.

[29]  Amy Huffman Broadband , 2018, North Carolina Medical Journal.

[30]  Angela B. Seddon,et al.  Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers , 2008 .

[31]  Mihai S. Iovu,et al.  Spectroscopic studies of bulk AS2S3 glasses and amorphous films doped with Dy, Sm and Mn , 2002, Feofilov Symposium on Spectropscopy of Crystals Activated by Rare-Earth and Transition Metal Ions.

[33]  M. F. Churbanov,et al.  Preparation of high-purity Pr(3+) doped Ge–Ga–Sb–Se glasses with intensive middle infrared luminescence , 2016 .

[34]  J. Schneider,et al.  Fluoride fibre laser operating at 3.9 /spl mu/m , 1995 .

[35]  Trevor M. Benson,et al.  Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics , 2015 .

[36]  Trevor M. Benson,et al.  The Influence of Dysprosium Addition on the Crystallization Behavior of a Chalcogenide Selenide Glass Close to the Fiber Drawing Temperature , 2012 .

[37]  Trevor M. Benson,et al.  Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad , 2014 .

[38]  V. G. Plotnichenko,et al.  Preparation and investigation of Pr3+-doped Ge–Sb–Se–In–I glasses as promising material for active mid-infrared optics , 2017 .

[39]  A. Seddon,et al.  True mid-infrared Pr3+ absorption cross-section in a selenide-chalcogenide host-glass , 2016, 2016 18th International Conference on Transparent Optical Networks (ICTON).

[40]  Joseph Ganem,et al.  Infrared laser characteristics of praseodymium-doped lanthanum trichloride , 1994 .

[41]  J. Sanghera,et al.  Core/clad selenide glass fiber doped with Pr3+ for active mid-IR applications , 2001 .

[42]  Norman P. Barnes,et al.  Mid infrared lasers for remote sensing applications , 2016 .

[43]  A. Seddon A Prospective for New Mid‐Infrared Medical Endoscopy Using Chalcogenide Glasses , 2011 .

[44]  Réal Vallée,et al.  3.77 μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber. , 2014, Optics letters.

[45]  Leslie Brandon Shaw,et al.  Rare-earth doped selenide glasses and fibers for active applications in the near and mid-IR , 1999 .