Recognition algorithms in knot theory

In this paper the problem of constructing algorithms for comparing knots and links is discussed. A survey of existing approaches and basic results in this area is given. In particular, diverse combinatorial methods for representing links are discussed, the Haken algorithm for recognizing a trivial knot (the unknot) and a scheme for constructing a general algorithm (using Haken's ideas) for comparing links are presented, an approach based on representing links by closed braids is described, the known algorithms for solving the word problem and the conjugacy problem for braid groups are described, and the complexity of the algorithms under consideration is discussed. A new method of combinatorial description of knots is given together with a new algorithm (based on this description) for recognizing the unknot by using a procedure for monotone simplification. In the conclusion of the paper several problems are formulated whose solution could help to advance towards the "algorithmization" of knot theory.

[1]  Y. Hashizume On the uniqueness of the decomposition of a link , 1958 .

[2]  Emil Artin,et al.  Theorie der Zöpfe , 1925 .

[3]  Joel Hass,et al.  Algorithms for recognizing knots and 3-manifolds , 1998 .

[4]  W. Chow On the Algebraical Braid Group , 1948 .

[5]  Klaus Johannson,et al.  Homotopy Equivalences of 3-Manifolds with Boundaries , 1979 .

[6]  J. Birman,et al.  Studying links via closed braids. III. Classifying links which are closed 3-braids , 1993 .

[7]  Juan Gonzalez-Meneses,et al.  Conjugacy problem for braid groups and Garside groups1 , 2001 .

[8]  William Jaco,et al.  Algorithms for the complete decomposition of a closed $3$-manifold , 1995 .

[9]  J. Weeks,et al.  The first 1,701,936 knots , 1998 .

[10]  J. Birman,et al.  Studying links via closed braids. V. The unlink , 1992 .

[11]  C. H. Dowker,et al.  Classification of knot projections , 1983 .

[12]  Joan S. Birman,et al.  STUDYING LINKS VIA CLOSED BRAIDS I: A FINITENESS THEOREM , 1992 .

[13]  D. Welsh,et al.  On the computational complexity of the Jones and Tutte polynomials , 1990, Mathematical Proceedings of the Cambridge Philosophical Society.

[14]  J. Birman Braids, Links, and Mapping Class Groups. , 1975 .

[15]  Geoffrey Hemion,et al.  On the classification of homeomorphisms of 2-manifolds and the classification of 3-manifolds , 1979 .

[16]  I. Dynnikov Three-page approach to knot theory. Encoding and local moves , 1999 .

[17]  Bemerkungen zur knotentheorie , 1934 .

[18]  Hugh R. Morton,et al.  ALGORITHMS FOR POSITIVE BRAIDS , 1994 .

[19]  F. A. Garside,et al.  THE BRAID GROUP AND OTHER GROUPS , 1969 .

[20]  Ivan Dynnikov,et al.  Arc-presentations of links. Monotonic simplification , 2002 .

[21]  Jeffrey C. Lagarias,et al.  The computational complexity of knot and link problems , 1999, JACM.

[22]  Michael D. Hirsch,et al.  A new algorithm for recognizing the unknot , 1998 .

[23]  P. Cromwell Embedding knots and links in an open book I: Basic properties , 1995 .

[24]  Ivan Dynnikov,et al.  A New Way to Represent Links. One-Dimensional Formalism and Untangling Technology , 2001 .

[25]  William Jaco,et al.  Seifert fibered spaces in 3-manifolds , 1979 .

[26]  Mladen Bestvina,et al.  Train-tracks for surface homeomorphisms , 1995 .

[27]  W. Thurston On the geometry and dynamics of diffeomorphisms of surfaces , 1988 .

[28]  Michael Kapovich,et al.  Hyperbolic Manifolds and Discrete Groups , 2000 .

[29]  Walter D. Neumann,et al.  Canonical decompositions of 3–manifolds , 1997, math/9712227.

[30]  Patrick Dehornoy,et al.  A Fast Method for Comparing Braids , 1997 .

[31]  Horst Schubert,et al.  Die eindeutige Zerlegbarkeit eines Knotens in Primknoten , 1949 .

[32]  W. Haken,et al.  Über das Homöomorphieproblem der 3-Mannigfaltigkeiten. I , 1962 .

[33]  Joan S. Birman,et al.  A new approach to the word and conjugacy problems in the braid groups , 1997 .

[34]  Friedhelm Waldhausen,et al.  Recent results on sufficiently large 3-manifolds , 1976 .

[35]  Ivan Dynnikov,et al.  On a Yang-Baxter map and the Dehornoy ordering , 2002 .

[36]  J. W. Alexander,et al.  On Types of Knotted Curves , 1926 .

[37]  Patrick Dehornoy,et al.  Why are braids orderable , 2002 .

[38]  W. Thurston Three dimensional manifolds, Kleinian groups and hyperbolic geometry , 1982 .

[39]  Hugh R. Morton,et al.  An irreducible 4-string braid with unknotted closure , 1983, Mathematical Proceedings of the Cambridge Philosophical Society.

[40]  J W Alexander,et al.  A Lemma on Systems of Knotted Curves. , 1923, Proceedings of the National Academy of Sciences of the United States of America.

[41]  I. A. Dynnikov,et al.  Three-page approach to knot theory. Universal semigroup , 2000 .

[42]  Friedhelm Waldhausen,et al.  On irreducible 3-manifolds which are sufficiently large * , 2010 .

[43]  Ki Hyoung Ko,et al.  The Infimum, Supremum, and Geodesic Length of a Braid Conjugacy Class , 2000 .

[44]  J. Conway An enumeration of knots and links, and some of their algebraic properties , 1970 .

[45]  W. Haken,et al.  Ein Verfahren zur Aufspaltung einer 3-Mannigfaltigkeit in irreduzible 3-Mannigfaltigkeiten , 1961 .

[46]  E. Artin The theory of braids. , 1950, American scientist.

[47]  Pierre Vogel,et al.  Representation of links by braids: A new algorithm , 1990 .

[48]  Patrick Dehornoy,et al.  Braids and self-distributivity , 2000 .

[49]  P. Boldi,et al.  TOWARDS AN IMPLEMENTATION OF THE B–H ALGORITHM FOR RECOGNIZING THE UNKNOT , 2001, math/0102177.

[50]  Hellmuth Kneser,et al.  Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten. , 1929 .

[51]  J. Birman,et al.  Studying links via closed braids II: On a theorem of Bennequin , 1991 .

[52]  F. Bohnenblust,et al.  The Algebraical Braid Group , 1947 .

[53]  Patrick Dehornoy,et al.  Groups with a complemented presentation , 1997 .

[54]  W. Thurston,et al.  The Computational Complexity of Knot Genus and Spanning Area , 2002, math/0205057.

[55]  Studying links via closed braids IV: composite links and split links , 1990, math/0407403.