ERA-Interim/Land: a global land water resources dataset

Introduction Conclusions References

[1]  Kelly Elder,et al.  An Improved Snow Scheme for the ECMWF Land Surface Model: Description and Offline Validation , 2010 .

[2]  Florian Pappenberger,et al.  Global runoff routing with the hydrological component of the ECMWF NWP system , 2009 .

[3]  Gianpaolo Balsamo,et al.  A bare ground evaporation revision in the ECMWF land-surface scheme: evaluation of its impact using ground soil moisture and satellite microwave data , 2012 .

[4]  Peter Bauer,et al.  “1D+4DVAR” Assimilation of NCEP Stage-IV Radar and Gauge Hourly Precipitation Data at ECMWF , 2007 .

[5]  Xubin Zeng,et al.  Evaluation of snow albedo in land models for weather and climate studies , 2010 .

[6]  W. J. Shuttleworth,et al.  Creation of the WATCH Forcing Data and Its Use to Assess Global and Regional Reference Crop Evaporation over Land during the Twentieth Century , 2011 .

[7]  Naota Hanasaki,et al.  GSWP-2 Multimodel Analysis and Implications for Our Perception of the Land Surface , 2006 .

[8]  T. Black,et al.  Assessing land-surface-atmosphere coupling in the ERA-40 reanalysis with boreal forest data , 2006 .

[9]  G. Balsamo,et al.  Complexity of Snow Schemes in a Climate Model and Its Impact on Surface Energy and Hydrology , 2012 .

[10]  S. Schubert,et al.  MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications , 2011 .

[11]  Y. Kerr,et al.  Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations , 2012 .

[12]  Lifeng Luo,et al.  Contribution of land surface initialization to subseasonal forecast skill: First results from a multi‐model experiment , 2010 .

[13]  Aaron Boone,et al.  Simulation of Northern Eurasian Local Snow Depth, Mass, and Density Using a Detailed Snowpack Model and Meteorological Reanalyses , 2013 .

[14]  David T. Bolvin,et al.  Improving the global precipitation record: GPCP Version 2.1 , 2009 .

[15]  F. Pappenberger,et al.  Representing uncertainty in land surface hydrology: fully coupled simulations with the ECMWF land surface scheme , 2011 .

[16]  D. Lawrence,et al.  GLACE: The Global Land-Atmosphere Coupling Experiment. Part I: Overview , 2006 .

[17]  Miguel Potes,et al.  On the contribution of lakes in predicting near-surface temperature in a global weather forecasting model , 2012 .

[18]  Alison Fowler,et al.  Observation impact in data assimilation: the effect of non-Gaussian observation error , 2013 .

[19]  H. Douville,et al.  A new snow parameterization for the Météo-France climate model , 1995 .

[20]  J. Mahfouf,et al.  Comparative Study of Various Formulations of Evaporations from Bare Soil Using In Situ Data , 1991 .

[21]  Lars Isaksen,et al.  Soil Moisture Analyses at ECMWF: Evaluation Using Global Ground-Based In Situ Observations , 2012 .

[22]  C. Albergel,et al.  An evaluation of ASCAT surface soil moisture products with in-situ observations in Southwestern France , 2008 .

[23]  Paul Poli,et al.  Atmospheric conservation properties in ERA‐Interim , 2011 .

[24]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[25]  R. Dickinson,et al.  Comparison of seasonal and spatial variations of albedos from Moderate-Resolution Imaging Spectroradiometer (MODIS) and Common Land Model , 2003 .

[26]  A. Sterl,et al.  EC-Earth A Seamless earth-System Prediction Approach in Action , 2010 .

[27]  Matthias Drusch,et al.  ECMWF's Global Snow Analysis: Assessment and Revision Based on Satellite Observations , 2004 .

[28]  Dick Dee,et al.  Low‐frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets , 2010 .

[29]  S. Kanae,et al.  Global Hydrological Cycles and World Water Resources , 2006, Science.

[30]  Alison Fowler,et al.  Measures of observation impact in non-Gaussian data assimilation , 2012 .

[31]  T. Phillips,et al.  A proposal for a general interface between land surface schemes and general circulation models , 1998 .

[32]  Matthias Drusch,et al.  Global Automated Quality Control of In Situ Soil Moisture Data from the International Soil Moisture Network , 2013 .

[33]  George H. Taylor,et al.  High-quality spatial climate data sets for the United States and beyond , 2000 .

[34]  Roberto Buizza,et al.  The new VarEPS-monthly forecasting system: A first step towards seamless prediction , 2008 .

[35]  C. Daly,et al.  A Statistical-Topographic Model for Mapping Climatological Precipitation over Mountainous Terrain , 1994 .

[36]  L. Isaksen,et al.  A simplified Extended Kalman Filter for the global operational soil moisture analysis at ECMWF , 2013 .

[37]  J. Janowiak,et al.  The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present) , 2003 .

[38]  K. Davis,et al.  The MODIS (Collection V005) BRDF/albedo product: Assessment of spatial representativeness over forested landscapes , 2009 .

[39]  Dominique Carrer,et al.  Verification of the new ECMWF ERA-Interim reanalysis over France , 2010 .

[40]  P. Dirmeyer A History and Review of the Global Soil Wetness Project (GSWP) , 2011 .

[41]  F. Pappenberger,et al.  Deriving global flood hazard maps of fluvial floods through a physical model cascade , 2012 .

[42]  B. Hurk,et al.  A Revised Hydrology for the ECMWF Model: Verification from Field Site to Terrestrial Water Storage and Impact in the Integrated Forecast System , 2009 .

[43]  S. Seneviratne,et al.  A Revised Framework for Analyzing Soil Moisture Memory in Climate Data: Derivation and Interpretation , 2012 .

[44]  Florian Pappenberger,et al.  A revised land hydrology in the ECMWF model: a step towards daily water flux prediction in a fully‐closed water cycle , 2011 .

[45]  B. Hurk,et al.  The Torne-Kalix PILPS 2(e) experiment as a test bed for modifications to the ECMWF land surface scheme , 2003 .

[46]  M. Bosilovich,et al.  Evaluation of the Reanalysis Products from GSFC, NCEP, and ECMWF Using Flux Tower Observations , 2012 .

[47]  J. Thepaut,et al.  Toward a Consistent Reanalysis of the Climate System , 2014 .

[48]  Lifeng Luo,et al.  The Second Phase of the Global Land–Atmosphere Coupling Experiment: Soil Moisture Contributions to Subseasonal Forecast Skill , 2011 .

[49]  Alan H. Strahler,et al.  Validation of the MODIS bidirectional reflectance distribution function and albedo retrievals using combined observations from the aqua and terra platforms , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[50]  A. K. Betts,et al.  O ine validation of the ERA 40 surface scheme , 2000 .

[51]  W. Oechel,et al.  FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities , 2001 .

[52]  R. Koster,et al.  Assessment and Enhancement of MERRA Land Surface Hydrology Estimates , 2011 .

[53]  Lars Isaksen,et al.  Initialisation of Land Surface Variables for Numerical Weather Prediction , 2014, Surveys in Geophysics.

[54]  Dario Papale,et al.  Natural land carbon dioxide exchanges in the ECMWF integrated forecasting system: Implementation and offline validation , 2013 .

[55]  F. Rubel,et al.  3-hourly quantitative precipitation estimation over Central and Northern Europe from rain gauge and radar data , 2009 .

[56]  Lionel Jarlan,et al.  Impact of a satellite-derived leaf area index monthly climatology in a global numerical weather prediction model , 2013 .

[57]  W. Wagner,et al.  Skill and Global Trend Analysis of Soil Moisture from Reanalyses and Microwave Remote Sensing , 2013 .