A hybrid approach for improving predictive accuracy of collaborative filtering algorithms

Recommender systems represent a class of personalized systems that aim at predicting a user’s interest on information items available in the application domain, operating upon user-driven ratings on items and/or item features. One of the most widely used recommendation methods is collaborative filtering that exploits the assumption that users who have agreed in the past in their ratings on observed items will eventually agree in the future. Despite the success of recommendation methods and collaborative filtering in particular, in real-world applications they suffer from the insufficient number of available ratings, which significantly affects the accuracy of prediction. In this paper, we propose recommendation approaches that follow the collaborative filtering reasoning and utilize the notion of lifestyle as an effective user characteristic that can group consumers in terms of their behavior as indicated in consumer behavior and marketing theory. Emanating from a basic lifestyle-based recommendation algorithm we incrementally proceed to the development of hybrid recommendation approaches that address certain dimensions of the sparsity problem and empirically evaluate them providing further evidence of their effectiveness.

[1]  Bradley N. Miller,et al.  Using filtering agents to improve prediction quality in the GroupLens research collaborative filtering system , 1998, CSCW '98.

[2]  Michael J. Pazzani,et al.  Learning Collaborative Information Filters , 1998, ICML.

[3]  Liliana Ardissono,et al.  An adaptive system for the personalized access to news , 2001, AI Commun..

[4]  John Riedl,et al.  Combining Collaborative Filtering with Personal Agents for Better Recommendations , 1999, AAAI/IAAI.

[5]  Barry Smyth,et al.  A personalized television listings service , 2000, CACM.

[6]  Philip S. Yu,et al.  Horting hatches an egg: a new graph-theoretic approach to collaborative filtering , 1999, KDD '99.

[7]  Lynn R. Kahle,et al.  Problems With Vals in International Marketing Research: an Example From an Application of the Empirical Mirror Technique , 1988 .

[8]  Jonathan L. Herlocker,et al.  Evaluating collaborative filtering recommender systems , 2004, TOIS.

[9]  Carmel Domshlak,et al.  Efficient and non-parametric reasoning over user preferences , 2007, User Modeling and User-Adapted Interaction.

[10]  George M. Giaglis,et al.  Personalisation of Advertisements in the Digital TV Context , 2005 .

[11]  Alfred Kobsa,et al.  Personalised hypermedia presentation techniques for improving online customer relationships , 2001, The Knowledge Engineering Review.

[12]  Yoav Shoham,et al.  Fab: content-based, collaborative recommendation , 1997, CACM.

[13]  Douglas B. Terry,et al.  Using collaborative filtering to weave an information tapestry , 1992, CACM.

[14]  John Riedl,et al.  An algorithmic framework for performing collaborative filtering , 1999, SIGIR '99.

[15]  Kenneth Y. Goldberg,et al.  Eigentaste: A Constant Time Collaborative Filtering Algorithm , 2001, Information Retrieval.

[16]  Anton Nijholt,et al.  Prediction strategies: Combining prediction techniques to optimize personalization , 2002 .

[17]  Mark Rosenstein,et al.  Recommending and evaluating choices in a virtual community of use , 1995, CHI '95.

[18]  Dean P. Foster,et al.  Clustering Methods for Collaborative Filtering , 1998, AAAI 1998.

[19]  David L. Mothersbaugh,et al.  Consumer Behavior: Building Marketing Strategy , 1997 .

[20]  Rolph E. Anderson,et al.  Nederlandse samenvatting en bewerking van 'Multivariate data analysis, 4th Edition, 1995' , 1998 .

[21]  Liliana Ardissono,et al.  Tailoring the Interaction with Users in Web Stores , 2000, User Modeling and User-Adapted Interaction.

[22]  Thomas W. Malone,et al.  Intelligent Information Sharing Systems , 1986 .

[23]  Theodoros Bozios,et al.  Advanced Techniques for Personalized Advertising in a Digital TV Environment : The iMEDIA System , 2001 .

[24]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[25]  Elaine Rich Users are individuals: individualizing user models , 1999, Int. J. Hum. Comput. Stud..

[26]  John Riedl,et al.  E-Commerce Recommendation Applications , 2004, Data Mining and Knowledge Discovery.

[27]  David Heckerman,et al.  Empirical Analysis of Predictive Algorithms for Collaborative Filtering , 1998, UAI.

[28]  Rolph E. Anderson,et al.  Multivariate Data Analysis: Text and Readings , 1979 .

[29]  D. Schultz,et al.  Interactive Psychographics: Cross-Selling in the Banking Industry , 2002, Journal of Advertising Research.

[30]  Robin D. Burke,et al.  Hybrid Recommender Systems: Survey and Experiments , 2002, User Modeling and User-Adapted Interaction.

[31]  Loriene Roy,et al.  Content-based book recommending using learning for text categorization , 1999, DL '00.

[32]  George Karypis,et al.  Evaluation of Item-Based Top-N Recommendation Algorithms , 2001, CIKM '01.

[33]  Gavin C. Cawley,et al.  Efficient leave-one-out cross-validation of kernel fisher discriminant classifiers , 2003, Pattern Recognit..

[34]  George M. Giaglis,et al.  A Lifestyle-Based Approach for Delivering Personalized Advertisements in Digital Interactive Television , 2006, J. Comput. Mediat. Commun..

[35]  Peter Brusilovsky,et al.  Methods and techniques of adaptive hypermedia , 1996, User Modeling and User-Adapted Interaction.

[36]  Anthony Jameson,et al.  Adaptive Provision of Evaluation-Oriented Information: Tasks and Techniques , 1995, IJCAI.

[37]  Andrew W. Moore,et al.  Efficient Algorithms for Minimizing Cross Validation Error , 1994, ICML.

[38]  William W. Cohen,et al.  Recommendation as Classification: Using Social and Content-Based Information in Recommendation , 1998, AAAI/IAAI.

[39]  Mark Claypool,et al.  Combining Content-Based and Collaborative Filters in an Online Newspaper , 1999, SIGIR 1999.

[40]  Geoffrey I. Webb,et al.  # 2001 Kluwer Academic Publishers. Printed in the Netherlands. Machine Learning for User Modeling , 1999 .

[41]  Ali Kara,et al.  Markets of a single customer: exploiting conceptual developments in market segmentation , 1997 .

[42]  Raymond J. Mooney,et al.  Content-boosted collaborative filtering for improved recommendations , 2002, AAAI/IAAI.

[43]  Michael J. Pazzani,et al.  Learning and Revising User Profiles: The Identification of Interesting Web Sites , 1997, Machine Learning.

[44]  Joshua Alspector,et al.  Feature-based and Clique-based User Models for Movie Selection: A Comparative Study , 1997, User Modeling and User-Adapted Interaction.

[45]  Bernard Zenko,et al.  Is Combining Classifiers with Stacking Better than Selecting the Best One? , 2004, Machine Learning.

[46]  Thomas Hofmann,et al.  Latent Class Models for Collaborative Filtering , 1999, IJCAI.

[47]  Thomas Hofmann,et al.  Latent semantic models for collaborative filtering , 2004, TOIS.

[48]  Maarten van Someren,et al.  Discovering Stages in Web Navigation , 2005, User Modeling.

[49]  Marko Balabanovic,et al.  An adaptive Web page recommendation service , 1997, AGENTS '97.

[50]  P. Vyncke Lifestyle Segmentation , 2002 .

[51]  John Riedl,et al.  Analysis of recommendation algorithms for e-commerce , 2000, EC '00.

[52]  Ivan Koychev,et al.  Learning to recommend from positive evidence , 2000, IUI '00.

[53]  Stephen P. Harter,et al.  Variations in Relevance Assessments and the Measurement of Retrieval Effectiveness , 1996, J. Am. Soc. Inf. Sci..

[54]  John Riedl,et al.  GroupLens: an open architecture for collaborative filtering of netnews , 1994, CSCW '94.

[55]  Barrie Gunter,et al.  Consumer Profiles: An Introduction to Psychographics , 1992 .

[56]  Elaine Rich,et al.  User Modeling via Stereotypes , 1998, Cogn. Sci..

[57]  John Riedl,et al.  An Empirical Analysis of Design Choices in Neighborhood-Based Collaborative Filtering Algorithms , 2002, Information Retrieval.

[58]  George Lekakos,et al.  Improving the prediction accuracy of recommendation algorithms: Approaches anchored on human factors , 2006, Interact. Comput..

[59]  Paul Resnick,et al.  Recommender systems , 1997, CACM.

[60]  Pattie Maes,et al.  Social information filtering: algorithms for automating “word of mouth” , 1995, CHI '95.

[61]  Michael J. Pazzani,et al.  A Framework for Collaborative, Content-Based and Demographic Filtering , 1999, Artificial Intelligence Review.

[62]  Joseph A. Konstan,et al.  Content-Independent Task-Focused Recommendation , 2001, IEEE Internet Comput..

[63]  Milan Milenkovic Delivering Interactive Services via a Digital TV Infrastructure , 1998, IEEE Multim..

[64]  Pedro M. Domingos,et al.  On the Optimality of the Simple Bayesian Classifier under Zero-One Loss , 1997, Machine Learning.

[65]  Peter Brusilovsky,et al.  Adaptive Hypermedia , 2001, User Modeling and User-Adapted Interaction.

[66]  David G. Stork,et al.  Pattern Classification , 1973 .

[67]  Bruce Krulwich,et al.  LIFESTYLE FINDER: Intelligent User Profiling Using Large-Scale Demographic Data , 1997, AI Mag..

[68]  Wendy Gersten,et al.  Data Management in Analytical Customer Relationship Management , 2001 .

[69]  G. Belch,et al.  Advertising and Promotion: An Integrated Marketing Communications Perspective , 1997 .

[70]  Eric Horvitz,et al.  Collaborative Filtering by Personality Diagnosis: A Hybrid Memory and Model-Based Approach , 2000, UAI.

[71]  Neil J. Hurley,et al.  Promoting Recommendations: An Attack on Collaborative Filtering , 2002, DEXA.