A global model: Empirical orthogonal function analysis of total electron content 1999–2009 data

[1] A global ionospheric total electron content (TEC) model based on the empirical orthogonal function (EOF) analysis method is constructed using the global ionosphere maps provided by Jet Propulsion Laboratory during the years 1999–2009. The importance of different types of variation to the overall TEC variability as well as the influence of solar radiation and geomagnetic activity toward TEC can be well represented by the characteristics of EOF base functions Ek and associated coefficients Pk. The quick convergence of EOF decomposition makes it possible to use the first four orders of the EOF series to represent 99.04% of the overall variance of the original data set. E1 represents the essential feature of global spatial and diurnal variation of the TEC. E2 contains a hemispherically asymmetric pattern manifesting the summer-to-winter annual variation. E3 and E4 can well reflect the equatorial anomaly phenomenon. P1 contains an obvious solar cycle variation pattern as well as annual and semiannual variation components. P2 mainly includes an annual fluctuation component. P3 has a strong annual variation and a weak seasonal variation pattern. P4 has both evident annual and semiannual oscillation components. The Fourier series as a combination of trigonometric and linear functions are used to represent the solar cycle, annual, and semiannual variation of the coefficients. Therefore the global TEC model is established through incorporating the modeled EOF series. The accuracy and quality of the model have been validated through the model-data comparison, which indicates that the model can reflect the majority of the variations and the feature of temporal-spatial distribution of the global ionospheric TEC.

[1]  H. Storch,et al.  Statistical Analysis in Climate Research , 2000 .

[2]  Jaume Sanz,et al.  Improvement of global ionospheric VTEC maps by using kriging interpolation technique , 2005 .

[3]  A. Ridley,et al.  Modeling ionospheric foF2 by using empirical orthogonal function analysis , 2011 .

[4]  E. R. Paula,et al.  Global equatorial ionospheric vertical plasma drifts measured by the AE-E satellite , 1995 .

[5]  D. Bedo,et al.  The EUV spectrophotometer on Atmosphere Explorer. , 1973 .

[6]  C. Venugopal,et al.  Harmonic analysis and an empirical model for TEC over Palehua , 2002 .

[7]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[8]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[9]  W. Wan,et al.  Evaluation of global modeling of M(3000)F2 and hmF2 based on alternative empirical orthogonal function expansions , 2010 .

[10]  Lintao Liu,et al.  Wavenumber‐4 patterns of the total electron content over the low latitude ionosphere , 2008 .

[11]  Xiaoqing Pi,et al.  Automated daily process for global ionospheric total electron content maps and satellite ocean altimeter ionospheric calibration based on Global Positioning System data , 1999 .

[12]  Orhan Arikan,et al.  Regional TEC mapping with Random Field Priors and Kriging , 2008 .

[13]  Zahra Bouya,et al.  Regional GPS-based ionospheric TEC model over Australia using Spherical Cap Harmonic Analysis , 2010 .

[14]  Feng Ding,et al.  Modeling the global ionospheric total electron content with empirical orthogonal function analysis , 2012 .

[15]  Libo Liu,et al.  Solar activity effects of the ionosphere: A brief review , 2011 .

[16]  Biqiang Zhao,et al.  An empirical orthogonal function model of total electron content over China , 2008 .

[17]  Chris Rizos,et al.  The International GNSS Service in a changing landscape of Global Navigation Satellite Systems , 2009 .

[18]  C. Rizos,et al.  The International GNSS Service in a changing landscape of Global Navigation Satellite Systems , 2009 .

[19]  I. V. Zhivetiev,et al.  Global electron content: a new conception to track solar activity , 2008 .

[20]  A. Garcia-Rigo,et al.  The IGS VTEC maps: a reliable source of ionospheric information since 1998 , 2009 .

[21]  N. I. Dvinskikh,et al.  Comparison of empirical models of ionospheric characteristics developed by means of different mapping methods , 1991 .

[22]  Dale N. Anderson,et al.  Dynamics of the low-latitude thermosphere: Quiet and disturbed conditions , 1997 .

[23]  Xiaoqing Pi,et al.  Global ionosphere perturbations monitored by the Worldwide GPS Network , 1996 .

[24]  R. Nerem,et al.  Thermospheric density oscillations due to periodic solar wind high- speed streams , 2008 .

[25]  Henry Rishbeth,et al.  Patterns of F2-layer variability , 2001 .

[26]  Daniel R. Marsh,et al.  An empirical model of nitric oxide in the lower thermosphere , 2003 .

[27]  Anthony J. Mannucci,et al.  A global mapping technique for GPS‐derived ionospheric total electron content measurements , 1998 .

[28]  Sean Bruinsma,et al.  Solar Rotation Effects on the Thermospheres of Mars and Earth , 2006, Science.

[29]  Aslak Grinsted,et al.  Nonlinear Processes in Geophysics Application of the Cross Wavelet Transform and Wavelet Coherence to Geophysical Time Series , 2022 .

[30]  Jaume Sanz,et al.  High resolution TEC monitoring method using permanent ground GPS receivers , 1997 .

[31]  T. Gulyaeva Regional analytical model of ionospheric total electron content: Monthly mean and standard deviation , 1999 .

[32]  Jaume Sanz,et al.  New approaches in global ionospheric determination using ground GPS data , 1999 .

[33]  Zuo Xiao,et al.  Study of the ionospheric total electron content response to the great flare on 15 April 2001 using the International GPS Service network for the whole sunlit hemisphere , 2003 .

[34]  Tomoko Matsuo,et al.  Modes of high‐latitude electric field variability derived from DE‐2 measurements: Empirical Orthogonal Function (EOF) analysis , 2001 .

[35]  Koji Matsumoto,et al.  Regional ionosphere map over Japanese Islands , 2002 .

[36]  Stewart Moses,et al.  Plasma waves at collisionless shocks in space: The observations of Frederick L. Scarf , 1991 .

[37]  Michael Mendillo,et al.  Storms in the ionosphere: Patterns and processes for total electron content , 2006 .

[38]  Dale N. Anderson,et al.  Parameterized ionospheric model: A global ionospheric parameterization based on first principles models , 1995 .

[39]  C. Meng,et al.  Suppression of discrete aurorae by sunlight , 1996, Nature.

[40]  J. Feltens,et al.  Development of a new three‐dimensional mathematical ionosphere model at European Space Agency/European Space Operations Centre , 2007 .

[41]  Dieter Bilitza,et al.  International reference ionosphere , 1978 .

[42]  T. Fuller‐Rowell,et al.  Dynamic and energetic coupling in the equatorial ionosphere and thermosphere , 2003 .

[43]  John Bosco Habarulema,et al.  Regional GPS TEC modeling; Attempted spatial and temporal extrapolation of TEC using neural networks , 2011 .

[44]  P. Richards,et al.  EUVAC: A solar EUV Flux Model for aeronomic calculations , 1994 .

[45]  Wenyao Xu,et al.  Decomposition of daily geomagnetic variations by using method of natural orthogonal component , 2004 .

[46]  Libo Liu,et al.  Solar activity variations of nighttime ionospheric peak electron density , 2006 .

[47]  Lee-Anne McKinnell,et al.  TEC measurements and modelling over Southern Africa during magnetic storms; a comparative analysis , 2010 .

[48]  W. Wan,et al.  Modeling M(3000)F2 based on empirical orthogonal function analysis method , 2008 .

[49]  Anthony J. Mannucci,et al.  Subdaily northern hemisphere ionospheric maps using an extensive network of GPS receivers , 1995 .

[50]  Bodo W. Reinisch,et al.  International Reference Ionosphere 2000 , 2001 .

[51]  Sandro M. Radicella,et al.  Global ionospheric maps from GPS observations using modip latitude , 2006 .

[52]  S. Schlüter,et al.  GPS ionospheric imaging of the north polar ionosphere on 30 October 2003 , 2005 .

[53]  J. Forbes,et al.  Principal modes of thermospheric density variability: Empirical orthogonal function analysis of CHAMP 2001–2008 data , 2010 .

[54]  Biqiang Zhao,et al.  Statistical characteristics of the total ion density in the topside ionosphere during the period 1996-2004 using empirical orthogonal function (EOF) analysis , 2005 .

[55]  Timothy Fuller-Rowell,et al.  US‐TEC: A new data assimilation product from the Space Environment Center characterizing the ionospheric total electron content using real‐time GPS data , 2004 .

[56]  N. I. Dvinskikh Expansion of ionospheric characteristics fields in empirical orthogonal functions , 1988 .

[57]  Scott Edward Palo,et al.  Variability of the ionosphere , 2000 .

[58]  C. Mitchell,et al.  Imaging of the equatorial ionospheric anomaly over South America—A simulation study of total electron content , 2006 .

[59]  G. Lu,et al.  Optimal interpolation analysis of high-latitude ionospheric electrodynamics using empirical orthogonal functions: Estimation of dominant modes of variability and temporal scales of large-scale electric fields , 2005 .

[60]  R. Steven Nerem,et al.  Rotating solar coronal holes and periodic modulation of the upper atmosphere , 2008 .

[61]  Congliang Liu,et al.  A global model of the ionospheric F2 peak height based on EOF analysis , 2009 .