Spectral Properties of the Dirac Operator coupled with $\delta$-Shell Interactions

Let Ω ⊂ R be an open set. We study the spectral properties of the free Dirac operator H := −iα · ∇ + mβ coupled with the singular potential Vκ = (ǫI4 + μβ + η(α · N))δ∂Ω, where κ = (ǫ, μ, η) ∈ R. The open set Ω can be either a C-bounded domain or a locally deformed halfspace. In both cases, self-adjointness is proved and several spectral properties are given. In particular, we give a complete description of the essential spectrum of H + Vκ in the case of a locally deformed half-space, for the so-called critical combinations of coupling constants. Finally, we introduce a new model of Dirac operators with δ-interactions and deal with its spectral properties. More precisely, we study the coupling Hζ,υ = H + (−iζα1α2α3 + iυβ (α ·N)) δ∂Ω, with ζ, υ ∈ R. In particular, we show that H0,±2 is essentially self-adjoint and generates confinement.

[1]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[2]  J. Behrndt,et al.  Two-dimensional Dirac operators with singular interactions supported on closed curves , 2019, Journal of Functional Analysis.

[3]  L. Vega,et al.  A strategy for self-adjointness of Dirac operators: Applications to the MIT bag model and $\delta$-shell interactions , 2016, Publicacions Matemàtiques.

[4]  P. Exner,et al.  On Dirac operators in R 3 with electrostatic and Lorentz scalar δ -shell interactions , 2019 .

[5]  J. Behrndt,et al.  ON DIRAC OPERATORS WITH ELECTROSTATIC δ-SHELL INTERACTIONS OF CRITICAL STRENGTH , 2017 .

[6]  足立 匡義 書評 P.D.Hislop, I.M.Sigal: Introduction to Spectral Theory--With Applications to Schrodinger Operators〔和文〕 , 2000 .

[7]  J. Behrndt,et al.  Elliptic differential operators on Lipschitz domains and abstract boundary value problems , 2013, Journal of functional analysis.

[8]  C. Kenig,et al.  Hardy spaces and the Neumann problem in L^p for laplace's equation in Lipschitz domains , 1987 .

[9]  W. D. Evans,et al.  Elliptic Differential Operators and Spectral Analysis , 2018 .

[10]  Daniel J. Arrigo,et al.  An Introduction to Partial Differential Equations , 2017, An Introduction to Partial Differential Equations.

[11]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[12]  C. DeTar The Mit Bag Model , 1980 .

[13]  The Laplace Equation , 2005 .

[14]  J. Behrndt,et al.  Self-Adjoint Dirac Operators on Domains in R 3. , 2019, Annales Henri Poincare.

[15]  G. David Morceaux de graphes lipschitziens et integrales singulières sur une surface. , 1988 .

[16]  G. Weiss,et al.  Extensions of Hardy spaces and their use in analysis , 1977 .

[17]  On the uniform rectifiability of AD-regular measures with bounded Riesz transform operator: the case of codimension 1 , 2012, 1212.5229.

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  Michael E. Taylor,et al.  Geometric and transformational properties of Lipschitz domains, Semmes-Kenig-Toro domains, and other classes of finite perimeter domains , 2007 .

[20]  F. Domínguez‐Adame Exact solutions of the Dirac equation with surface delta interactions , 1990 .

[21]  An Isoperimetric-Type Inequality for Electrostatic Shell Interactions for Dirac Operators , 2015, 1504.04220.

[22]  A. Jonsson BESOV SPACES ON CLOSED SUBSETS OF R" , 2010 .

[23]  P. Aiena SEMI-FREDHOLM OPERATORS, PER TURBATION THEORY AND LOCALIZED SVEP , 2007 .

[24]  J. Behrndt,et al.  Boundary Value Problems, Weyl Functions, and Differential Operators , 2020, Monographs in Mathematics.

[25]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[26]  新國 裕昭,et al.  書評 Gerald Teschl : Mathematical Methods in Quantum Mechanics : With Applications to Schrodinger Operators , 2013 .

[27]  V. Weisskopf,et al.  A New Extended Model of Hadrons , 1974 .

[28]  SPECTRA OF SELF-ADJOINT EXTENSIONS AND APPLICATIONS TO SOLVABLE SCHRÖDINGER OPERATORS , 2006, math-ph/0611088.

[29]  Jaak Peetre,et al.  Function spaces on subsets of Rn , 1984 .

[30]  J. Shabani,et al.  Exactly solvable models of relativistic δ-sphere interactions in quantum mechanics , 2002 .

[31]  Luis Vega,et al.  Shell Interactions for Dirac Operators: On the Point Spectrum and the Confinement , 2014, SIAM J. Math. Anal..

[32]  M. Holzmann,et al.  Dirac operators with Lorentz scalar shell interactions , 2017, Reviews in Mathematical Physics.

[33]  T. Ourmières-Bonafos,et al.  Dirac Operators and Shell Interactions: A Survey , 2019, Springer INdAM Series.

[34]  M. Mitrea,et al.  Hardy Spaces, Singular Integrals and The Geometry of Euclidean Domains of Locally Finite Perimeter , 2009 .

[35]  Fabio Pizzichillo,et al.  Self-adjointness of two dimensional Dirac operators on corner domains , 2019, Journal of Spectral Theory.

[36]  A. Mcintosh,et al.  Harmonic Analysis of Dirac Operators on Lipschitz Domains , 2001 .

[37]  Michael Taylor,et al.  Tools for Pde: Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials , 2000 .

[38]  J. Jodeit,et al.  Potential techniques for boundary value problems on C1-domains , 1978 .

[39]  A. Mas Dirac operators, shell interactions and discontinuous gauge functions across the boundary , 2015, 1512.03573.

[40]  P. Exner,et al.  On the spectral properties of Dirac operators with electrostatic δ-shell interactions , 2016, 1609.00608.

[41]  Israel Michael Sigal,et al.  Introduction to Spectral Theory: With Applications to Schrödinger Operators , 1995 .

[42]  David Jerison,et al.  The Neumann problem on Lipschitz domains , 1981 .

[43]  Asymptotics of the bound state induced by δ-interaction supported on a weakly deformed plane , 2017, 1703.10854.

[44]  Vladimir Lotoreichik,et al.  General $\delta$-shell interactions for the two-dimensional Dirac operator: self-adjointness and approximation , 2021, Revista Matemática Iberoamericana.

[45]  G. Verchota Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains , 1984 .

[46]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[47]  L. Vega,et al.  Shell interactions for Dirac operators , 2013, 1303.2519.