The local radial point interpolation meshless method for solving Maxwell equations

The Maxwell equations are basic equations of electromagnetic. In this paper we employed ADI–LRPIM (alternative direction implicit method is applied for approximating the time variable and the local radial point interpolation meshless method is used for space variable) to solve the two-dimensional time dependent Maxwell equations. This method consists of two stages for each time step implemented in alternative directions which are simple in computations. Local radial point interpolation method is a type of meshless method which uses a set of nodes scattered within the domain of the problem as well as a set of nodes scattered on the boundaries of the domain instead of using a predefined mesh to represent the problem domain and its boundaries, this feature makes, LRPIM to be flexible. Also it produces acceptable results for solving many partial differential equations. The proposed method is accurate and efficient, these features are illustrated by solving numerical examples in transverse magnetic and transverse electric fields. We used a kind of finite difference scheme for approximation of derivative terms in main relations to reduce errors and computational cost and eliminate integrals of weak form on internal boundaries by suitable selection of test function.

[1]  Bengt Fornberg,et al.  Some unconditionally stable time stepping methods for the 3D Maxwell's equations , 2004 .

[2]  Christophe Fumeaux,et al.  Recent developments of the meshless radial point interpolation method for time‐domain electromagnetics , 2012 .

[3]  Mehdi Dehghan,et al.  The method of lines for solution of the one-dimensional wave equation subject to an integral conservation condition , 2008, Comput. Math. Appl..

[4]  Mehdi Dehghan,et al.  A meshless technique based on the local radial basis functions collocation method for solving parabolic–parabolic Patlak–Keller–Segel chemotaxis model , 2015 .

[5]  Ronald H. W. Hoppe,et al.  Finite element methods for Maxwell's equations , 2005, Math. Comput..

[6]  P N Scharbach,et al.  A Dynamical Theory of the Electromagnetic Field , 1983 .

[7]  Mehdi Dehghan,et al.  Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices , 2006, Math. Comput. Simul..

[8]  Dong Liang,et al.  The splitting finite-difference time-domain methods for Maxwell's equations in two dimensions , 2007 .

[9]  Fang Liu,et al.  Finite Difference Method for Two-Sided Space-Fractional Partial Differential Equations , 2014, FDM.

[10]  Mehdi Dehghan,et al.  Combination of meshless local weak and strong (MLWS) forms to solve the two dimensional hyperbolic telegraph equation , 2010 .

[11]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Preface , 2003 .

[12]  Gregory E. Fasshauer,et al.  Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.

[13]  Roger F. Harrington,et al.  Field computation by moment methods , 1968 .

[14]  Zhizhang Chen,et al.  Towards the development of unconditionally stable time-domain meshless numerical methods , 2009, 2009 IEEE MTT-S International Microwave Symposium Digest.

[15]  Christophe Fumeaux,et al.  The meshless radial point interpolation method for time-domain electromagnetics , 2008, 2008 IEEE MTT-S International Microwave Symposium Digest.

[16]  David A. Kopriva,et al.  Implementing Spectral Methods for Partial Differential Equations , 2009 .

[17]  Dong Liang,et al.  Energy-conserved splitting spectral methods for two dimensional Maxwell's equations , 2014, J. Comput. Appl. Math..

[18]  Xiaolin Li,et al.  Error estimates for the moving least-square approximation and the element-free Galerkin method in n-dimensional spaces , 2016 .

[19]  J. Miller Numerical Analysis , 1966, Nature.

[20]  M. Shashkov Conservative Finite-Difference Methods on General Grids , 1996 .

[21]  Guirong Liu Meshfree Methods: Moving Beyond the Finite Element Method, Second Edition , 2009 .

[22]  H. H. Rachford,et al.  The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .

[23]  A. F. Mastryukov,et al.  Solving the 2D Maxwell equations by a Laguerre spectral method , 2010 .

[24]  Yiqiang Yu,et al.  Towards the Development of an Unconditionally Stable Time-Domain Meshless Method , 2010, IEEE Transactions on Microwave Theory and Techniques.

[25]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[26]  Rajeshwari Chatterjee Antenna theory and practice , 1988 .

[27]  M. Chari,et al.  Finite elements in electrical and magnetic field problems , 1980 .

[28]  Ahmed Alsaedi,et al.  Numerical and analytical solutions for Falkner-Skan flow of MHD Maxwell fluid , 2014, Appl. Math. Comput..

[29]  S. Mukherjee The Boundary Node Method , 2002 .

[30]  Elisa Francomano,et al.  An improved smoothed particle electromagnetics method in 3D time domain simulations , 2012 .

[31]  S. Selberherr,et al.  Alternating-Direction Implicit Formulation of the Finite-Element Time-Domain Method , 2007, IEEE Transactions on Microwave Theory and Techniques.

[32]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[33]  Mehdi Dehghan,et al.  A new ADI technique for two-dimensional parabolic equation with an integral condition☆ , 2002 .

[34]  Elisa Francomano,et al.  Numerical Investigations of an Implicit Leapfrog Time-Domain Meshless Method , 2015, J. Sci. Comput..

[35]  Gui-Rong Liu,et al.  An Introduction to Meshfree Methods and Their Programming , 2005 .

[36]  K. Parand,et al.  Numerical solution of Maxwell equations using local weak form meshless techniques , 2014 .

[37]  Mehdi Dehghan,et al.  A meshless local Petrov-Galerkin method for the time-dependent Maxwell equations , 2014, J. Comput. Appl. Math..

[38]  Guirong Liu,et al.  Smoothed Particle Hydrodynamics: A Meshfree Particle Method , 2003 .

[39]  Mehdi Dehghan,et al.  A high order finite volume element method for solving elliptic partial integro-differential equations , 2013 .

[40]  Jianzhong Su,et al.  A MOVING FINITE DIFFERENCE METHOD FOR PARTIAL DIFFERENTIAL EQUATIONS , 2004 .

[41]  David A. Kopriva,et al.  Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers , 2009 .

[42]  K. Stüben,et al.  Multigrid methods: Fundamental algorithms, model problem analysis and applications , 1982 .

[43]  T. Hayat,et al.  Series solution for the upper-convected Maxwell fluid over a porous stretching plate , 2006 .

[44]  M. Dehghan,et al.  The boundary elements method for magneto-hydrodynamic (MHD) channel flows at high Hartmann numbers , 2013 .

[45]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[46]  Guirong Liu Mesh Free Methods: Moving Beyond the Finite Element Method , 2002 .

[47]  Mehdi Dehghan,et al.  Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM) , 2010, Comput. Phys. Commun..

[48]  Jae-Hun Jung,et al.  A note on the Gibbs phenomenon with multiquadric radial basis functions , 2007 .

[49]  James A. Sethian,et al.  Vortex methods and vortex motion , 1991 .

[50]  Gregory E. Fasshauer,et al.  On choosing “optimal” shape parameters for RBF approximation , 2007, Numerical Algorithms.

[51]  Eugenio Oñate,et al.  A finite point method for elasticity problems , 2001 .

[52]  Tatsuo Itoh,et al.  A Dual-Band Millimeter-Wave CMOS Oscillator With Left-Handed Resonator , 2010, IEEE Transactions on Microwave Theory and Techniques.

[53]  C. Trowbridge,et al.  The Analytical and Numerical Solution of Electric and Magnetic Fields , 1992 .

[54]  M. Fedoruk,et al.  Finite-volume algorithm for solving the time-dependent Maxwell equations on unstructured meshes , 2006 .

[55]  Elisa Francomano,et al.  Unconditionally stable meshless integration of time-domain Maxwell's curl equations , 2015, Appl. Math. Comput..

[56]  Mehdi Dehghan,et al.  An efficient implicit spectral element method for time-dependent nonlinear diffusion equations by evaluating integrals at one quadrature point , 2015, Comput. Math. Appl..

[57]  T. Sarkar,et al.  Maxwell, Hertz, the Maxwellians, and the early history of electromagnetic waves , 2001, IEEE Antennas and Propagation Magazine.

[58]  Guirong Liu,et al.  A meshfree radial point interpolation method (RPIM) for three-dimensional solids , 2005 .

[59]  Mehdi Dehghan,et al.  A meshless numerical procedure for solving fractional reaction subdiffusion model via a new combination of alternating direction implicit (ADI) approach and interpolating element free Galerkin (EFG) method , 2015, Comput. Math. Appl..

[60]  Yiqiang Yu,et al.  A 3-D Radial Point Interpolation Method for Meshless Time-Domain Modeling , 2009, IEEE Transactions on Microwave Theory and Techniques.

[61]  Mehdi Dehghan,et al.  Remediation of contaminated groundwater by meshless local weak forms , 2016, Comput. Math. Appl..

[62]  T. Belytschko,et al.  Discontinuous Radial Basis Function Approximations for Meshfree Methods , 2005 .

[63]  N.Yu. Bakaev The numerical solution of elliptic differential equations , 1986 .