Homogenization of a quasilinear elliptic problem in a fractal-reinforced structure

We consider a quasilinear elliptic boundary value problem posed in a three-dimensional bounded domain containing thin vertical strips constructed on horizontal iterated von Koch curves. We study the asymptotic behavior of this problem as the width of strips tends to zero and the sequence of iterated curves converges in the Hausdorff metric to the von Koch fractal curve. We derive the effective energy of the structure with respect to a critical size of the boundary layers taking place in the neighbourhoods of the strips. This energy contains new properties implying a nonlocal term and a singular integral energy supported within the fractal curve.

[1]  E. Ya. Khruslov,et al.  Homogenized Models of Composite Media , 1991 .

[2]  J. Adkins A THREE-DIMENSIONAL PROBLEM FOR HIGHLY ELASTIC MATERIALS SUBJECT TO CONSTRAINTS , 1958 .

[3]  Raffaela Capitanelli Homogeneous p-lagrangians and self-similarity. , 2003 .

[4]  J. E. Adkins,et al.  Large elastic deformations of isotropic materials X. Reinforcement by inextensible cords , 1955, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[5]  Umberto Mosco,et al.  Fractal Reinforcement of Elastic Membranes , 2009 .

[6]  M. El Jarroudi,et al.  Homogenization of elastic materials containing self-similar rigid micro-inclusions , 2018, Continuum Mechanics and Thermodynamics.

[7]  P. Seppecher,et al.  Determination of the Closure of the Set of Elasticity Functionals , 2003 .

[8]  M. Vivaldi,et al.  Reinforcement problems for variational inequalities on fractal sets , 2015 .

[9]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[10]  M. R. Lancia,et al.  Nonlinear Energy Forms and Lipschitz Spaces on the Koch Curve , 2002 .

[11]  Raffaela Capitanelli,et al.  Insulating layers of fractal type , 2013 .

[12]  M. Jarroudi,et al.  Homogenization of elastic materials reinforced by rigid notched fibres , 2018 .

[13]  Uta Freiberg,et al.  Energy Form on a Closed Fractal Curve , 2004 .

[14]  R. Rivlin The deformation of a membrane formed by inextensible cords , 1958 .

[15]  M. Jarroudi Homogenization of a nonlinear elastic fibre-reinforced composite: A second gradient nonlinear elastic material , 2013 .

[16]  Raffaela Capitanelli,et al.  Dynamical Quasi-Filling Fractal Layers , 2016, SIAM J. Math. Anal..

[17]  Hans Wallin,et al.  The dual of Besov spaces on fractals , 1995 .

[18]  Umberto Mosco,et al.  Thin fractal fibers , 2012 .

[19]  Guy Bouchitté,et al.  HOMOGENIZATION OF ELLIPTIC PROBLEMS IN A FIBER REINFORCED STRUCTURE. NON LOCAL EFFECTS , 1998 .

[20]  M. Jarroudi A third gradient elastic material resulting from the homogenization of a von Kármán ribbon-reinforced composite , 2018 .

[21]  M. R. Lancia,et al.  Quasi-linear Venttsel’ problems with nonlocal boundary conditions on fractal domains , 2017 .

[22]  K. Falconer Techniques in fractal geometry , 1997 .

[23]  Hédy Attouch,et al.  Variational inequalities with varying obstacles: The general form of the limit problem , 1983 .

[24]  H. Attouch Variational convergence for functions and operators , 1984 .

[25]  M. Jarroudi,et al.  Homogenization of an elastic material reinforced with thin rigid von Kármán ribbons , 2018, Mathematics and Mechanics of Solids.

[26]  Tosio Kato Perturbation theory for linear operators , 1966 .

[27]  Umberto Mosco,et al.  Layered fractal fibers and potentials , 2015 .

[28]  H. Wallin,et al.  Boundary value problems and brownian motion on fractals , 1997 .

[29]  M. El Jarroudi Homogenization of an elastic material reinforced with thin rigid von Kármán ribbons , 2018, Mathematics and Mechanics of Solids.

[30]  U. Mosco Convergence of convex sets and of solutions of variational inequalities , 1969 .

[31]  J. Adkins Cylindrically Symmetrical Deformations of Incompressible Elastic Materials Reinforced with Inextensible Cords , 1956 .

[32]  J. Adkins Finite plane deformation of thine elastic sheets reinforced with inextensible cords , 1956, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[33]  M. Jarroudi,et al.  Homogenization of elastic materials containing self-similar microcracks , 2019, The Quarterly Journal of Mechanics and Applied Mathematics.

[34]  A. Brillard,et al.  Asymptotic behaviour of a cylindrical elastic structure periodically reinforced along identical fibres , 2001, 1011.4367.

[35]  Harmonization and homogenization on fractals , 1993 .

[36]  R. Rivlin Plane Strain of a Net Formed by Inextensible Cords , 1955 .

[37]  Umberto Mosco,et al.  An Example of Fractal Singular Homogenization , 2007 .

[38]  M. El Jarroudi,et al.  Homogenization of rectangular cross-section fibre-reinforced materials: bending–torsion effects , 2016 .

[39]  S. Creo,et al.  Approximation of a nonlinear fractal energy functional on varying Hilbert spaces , 2017 .