Topography of the 410 km and 660 km discontinuities beneath the Japan Sea and adjacent regions by analysis of multiple‐ScS waves

The northwest Pacific subduction region is an ideal location to study the interaction between the subducting slab and upper mantle discontinuities. Due to the sparse distribution of seismic stations in the sea, previous studies mostly focus on mantle transition zone (MTZ) structures beneath continents or island arcs, leaving the vast area of the Japan Sea and Okhotsk Sea untouched. In this study, we analyzed multiple-ScS reverberation waves, and a common-reflection-point stacking technique was applied to enhance consistent signals beneath reflection points. A topographic image of the 410 km and 660 km discontinuities is obtained beneath the Japan Sea and adjacent regions. One-dimensional and 3-D velocity models are adapted to obtain the “apparent” and “true” depth. We observe a systematic pattern of depression (~10–20 km) and elevation (~5–10 km) of the 660, with the topography being roughly consistent with the shift of the olivine-phase transition boundary caused by the subducting Pacific plate. The behavior of the 410 is more complex. It is generally ~5–15 km shallower at the location where the slab penetrates and deepened by ~5–10 km oceanward of the slab where a low-velocity anomaly is observed in tomography images. Moreover, we observe a wide distribution of depressed 410 beneath the southern Okhotsk Sea and western Japan Sea. The hydrous wadsleyite boundary caused by the high water content at the top of the MTZ could explain the depression. The long-history trench rollback motion of Pacific slab might be responsible for the widely distributed depression of the 410 ranging upward and landward from the slab.

[1]  Stephen S. Gao,et al.  Imaging Mantle Discontinuities using Multiply-Reflected P-To-S Conversions , 2014 .

[2]  T. Duffy,et al.  Effect of hydration on the single-crystal elasticity of Fe-bearing wadsleyite to 12 GPa , 2011 .

[3]  B. Kennett,et al.  Traveltimes for global earthquake location and phase identification , 1991 .

[4]  R. Hilst,et al.  Imaging the upper mantle transition zone with a generalized Radon transform of SS precursors , 2010 .

[5]  Jeroen Tromp,et al.  Finite-frequency sensitivity kernels for global seismic wave propagation based upon adjoint methods , 2008 .

[6]  T. Jordan,et al.  High‐resolution, two‐dimensional vertical tomography of the central Pacific mantle using ScS reverberations and frequency‐dependent travel times , 1998 .

[7]  Charles A. Langston,et al.  Structure under Mount Rainier, Washington, inferred from teleseismic body waves , 1979 .

[8]  Hiroyuki Fujiwara,et al.  Recent Progress of Seismic Observation Networks in Japan , 2004 .

[9]  D. Suetsugu,et al.  Seismological evidence for metastable olivine inside a subducting slab , 1992, Nature.

[10]  A. Dziewoński,et al.  Global de-correlation of the topography of transition zone discontinuities , 1998 .

[11]  T. Katsura,et al.  The system Mg2SiO4‐Fe2SiO4 at high pressures and temperatures: Precise determination of stabilities of olivine, modified spinel, and spinel , 1989 .

[12]  Simon C. Stähler,et al.  AxiSEM: broadband 3-D seismic wavefields in axisymmetric media , 2014 .

[13]  Masayuki Obayashi,et al.  High temperature anomalies oceanward of subducting slabs at the 410-km discontinuity , 2006 .

[14]  T. Jordan,et al.  Observations of first-order mantle reverberations , 1987 .

[15]  J. Rhie,et al.  Topography of the 410 and 660 km discontinuities beneath the Korean Peninsula and southwestern Japan using teleseismic receiver functions , 2014 .

[16]  P. Bird An updated digital model of plate boundaries , 2003 .

[17]  Y. Ricard,et al.  Seismically deduced thermodynamics phase diagrams for the mantle transition zone , 2014 .

[18]  H. Kawaji,et al.  Low-temperature heat capacities, entropies and enthalpies of Mg2SiO4 polymorphs, and α−β−γ and post-spinel phase relations at high pressure , 2007 .

[19]  F. Niu,et al.  Seismic evidence for a thinner mantle transition zone beneath the South Pacific Superswell , 2000 .

[20]  Y. Gu,et al.  Tracking slabs beneath northwestern Pacific subduction zones , 2012 .

[21]  T. Yoshino,et al.  Olivine‐wadsleyite transition in the system (Mg,Fe)2SiO4 , 2004 .

[22]  M. Bianchi,et al.  Study of the lithospheric and upper-mantle discontinuities beneath eastern Asia by SS precursors , 2010 .

[23]  Q. Williams,et al.  Reconciling Pacific 410 and 660 km discontinuity topography, transition zone shear velocity patterns, and mantle phase transitions , 2010 .

[24]  K. Litasov,et al.  Phase relations and melt compositions in CMAS–pyrolite–H2O system up to 25 GPa , 2002 .

[25]  Dapeng Zhao,et al.  High‐resolution mantle tomography of China and surrounding regions , 2006 .

[26]  John H. Woodhouse,et al.  S40RTS: A degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements , 2011 .

[27]  F. A. Dahlen,et al.  Finite-frequency sensitivity kernels for boundary topography perturbations , 2004 .

[28]  Tianyu Zheng,et al.  A complex 660 km discontinuity beneath northeast China , 2003 .

[29]  N. Schmerr,et al.  Upper Mantle Discontinuity Topography from Thermal and Chemical Heterogeneity , 2007, Science.

[30]  J. Ning,et al.  Upper mantle tomography in the northwestern Pacific region using triplicated P waves , 2014 .

[31]  P. Shearer,et al.  Imaging mantle transition zone thickness with SdS-SS finite-frequency sensitivity kernels , 2008 .

[32]  S. Honda,et al.  Linking mantle upwelling with the lithosphere decent and the Japan Sea evolution: a hypothesis , 2013, Scientific Reports.

[33]  Stephen S. Gao,et al.  Mantle layering across central South America , 2003 .

[34]  D. Wiens,et al.  Detailed structure and sharpness of upper mantle discontinuities in the Tonga subduction zone from regional broadband arrays , 2005 .

[35]  Thomas H. Jordan,et al.  Mantle layering from ScS reverberations: 2. The transition zone , 1991 .

[36]  T. Jordan,et al.  Mantle layering from ScS reverberations: 1. Waveform inversion of zeroth-order reverberations , 1991 .

[37]  F. Marone,et al.  Seismic Evidence for Water Deep in Earth's Upper Mantle , 2003, Science.

[38]  N. Schmerr,et al.  Subducted lithosphere beneath the Kuriles from migration of PP precursors , 2011 .

[39]  M. Bostock Seismic imaging of lithospheric discontinuities and continental evolution , 1999 .

[40]  Bijaya B. Karki,et al.  Origin of lateral variation of seismic wave velocities and density in the deep mantle , 2001 .

[41]  S. Yoshioka,et al.  Metastable olivine wedge and deep dry cold slab beneath southwest Japan , 2011 .

[42]  T. Kunugi,et al.  Mapping of the 410‐ and 660‐km discontinuities beneath the Japanese islands , 2005 .

[43]  C. Bina,et al.  Frequency dependence of the visibility and depths of mantle seismic discontinuities , 1994 .

[44]  Yongshun John Chen,et al.  Receiver function images of the mantle transition zone beneath NE China: New constraints on intraplate volcanism, deep subduction and their potential link , 2012 .

[45]  P. Shearer,et al.  Experiments in migration processing of SS precursor data to image upper mantle discontinuity structure , 1999 .

[46]  Y. Fukao,et al.  Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity , 2012 .

[47]  X. Yuan,et al.  Receiver functions in northeast China – implications for slab penetration into the lower mantle in northwest Pacific subduction zone , 2003 .

[48]  A. Navrotsky,et al.  Negative Pressure-Temperature Slopes for Reactions Formign MgSiO3 Perovskite from Calorimetry , 1990, Science.

[49]  R. Hilst,et al.  The 660-km discontinuity within the subducting NW-Pacific lithospheric slab , 2002 .

[50]  P. Shearer,et al.  Global mapping of topography on transition zone velocity discontinuities by stacking SS precursors , 1998 .

[51]  George Helffrich,et al.  Phase transition Clapeyron slopes and transition zone seismic discontinuity topography , 1994 .

[52]  Yu Jeffrey Gu,et al.  Global variability of transition zone thickness , 2002 .

[53]  Meghan S. Miller,et al.  Evolution of mantle structure beneath the northwest Pacific: Evidence from seismic tomography and paleogeographic reconstructions , 2006 .

[54]  K. Hirahara,et al.  Detailed structure of the upper mantle discontinuities around the Japan subduction zone imaged by receiver function analyses , 2004 .

[55]  Juan Li,et al.  Topography of the 660‐km discontinuity beneath northeast China: Implications for a retrograde motion of the subducting Pacific slab , 2008 .

[56]  A. Yamada,et al.  Mapping the 660 km Discontinuity Under Japan Islands Using Mantle Reflected Waves , 2007 .

[57]  Y. Fukuda,et al.  Simulation of the Indonesian land gravity data using a digital terrain model data , 2004 .

[58]  A. Levander,et al.  Mapping the subducting Pacific slab beneath southwest Japan with Hi-net receiver functions , 2005 .

[59]  Justin Revenaugh,et al.  Mantle discontinuity structure beneath China , 1994 .

[60]  B. Wood,et al.  The Earth's mantle , 2001, Nature.

[61]  B. Romanowicz,et al.  Lateral variations in SH velocity structure of the transition zone beneath Korea and adjacent regions , 2012 .

[62]  Jiuhua Chen,et al.  Comparative in situ X-ray diffraction study of San Carlos olivine: Influence of water on the 410 km seismic velocity jump in Earth’s mantle , 2011 .

[63]  S. Sipkin,et al.  Seismic evidence for silicate melt atop the 410-km mantle discontinuity , 1994, Nature.

[64]  B Efron,et al.  Statistical Data Analysis in the Computer Age , 1991, Science.

[65]  T. Jordan,et al.  A study of mantle layering beneath the western Pacific , 1989 .

[66]  Thomas H. Jordan,et al.  Three‐dimensional Fréchet differential kernels for seismicdelay times , 2000 .

[67]  Barbara Romanowicz,et al.  The three‐dimensional shear velocity structure of the mantle from the inversion of body, surface and higher‐mode waveforms , 2000 .

[68]  Peter M. Shearer,et al.  Constraints on upper mantle discontinuities from observations of long-period reflected and converted phases , 1991 .

[69]  P. Shearer Transition zone velocity gradients and the 520-km discontinuity , 1996 .

[70]  H. Kawakatsu,et al.  Small subsidence of the 660‐km discontinuity beneath Japan probed by ScS reverberations , 2001 .

[71]  E. Ohtani,et al.  The role of water in the deep upper mantle and transition zone: dehydration of stagnant slabs and its effects on the big mantle wedge , 2009 .