Grain size effect on tensile deformation behaviors of pure aluminum

[1]  L. Kestens,et al.  Damage and strengthening mechanisms in severely deformed commercially pure aluminum: Experiments and modeling , 2021 .

[2]  B. Mirshekari,et al.  An anomalous effect of grain refinement on yield stress in friction stir processed lightweight steel , 2021 .

[3]  Jian Cao,et al.  Recent progress on control strategies for inherent issues in friction stir welding , 2021 .

[4]  Huijie Liu,et al.  Achievement of high-strength 2219 aluminum alloy joint in a broad process window by ultrasonic enhanced friction stir welding , 2020 .

[5]  N. Tsuji,et al.  Two-stage Hall-Petch relationship in Cu with recrystallized structure , 2020 .

[6]  S. Walley,et al.  The Hall–Petch and inverse Hall–Petch relations and the hardness of nanocrystalline metals , 2019, Journal of Materials Science.

[7]  X. An,et al.  Significance of stacking fault energy in bulk nanostructured materials: Insights from Cu and its binary alloys as model systems , 2019, Progress in Materials Science.

[8]  Q. Qin,et al.  Effect of the processing parameters of friction stir processing on the microstructure and mechanical properties of 6063 aluminum alloy , 2019, Materials Science and Engineering: A.

[9]  T. Furuhara,et al.  Strengthening Mechanisms in Ultrafine-Grained and Sub-grained High-Purity Aluminum , 2018, Metallurgical and Materials Transactions A.

[10]  N. Hansen,et al.  Strengthening mechanisms and Hall-Petch stress of ultrafine grained Al-0.3%Cu , 2018, Acta Materialia.

[11]  R. Mishra,et al.  Grain size dependence of fatigue properties of friction stir processed ultrafine-grained Al-5024 alloy , 2018 .

[12]  L. Dávila,et al.  Tensile nanomechanics and the Hall-Petch effect in nanocrystalline aluminium , 2018 .

[13]  N. Tsuji,et al.  Remarkable transitions of yield behavior and Lüders deformation in pure Cu by changing grain sizes , 2018 .

[14]  O. Engler Texture and anisotropy in cold rolled and recovery annealed AA 5182 sheets , 2015 .

[15]  T. Langdon,et al.  Structural impact on the Hall–Petch relationship in an Al–5Mg alloy processed by high-pressure torsion , 2015 .

[16]  X. An,et al.  Enhanced cyclic deformation responses of ultrafine-grained Cu and nanocrystalline Cu–Al alloys , 2014 .

[17]  L. Toth,et al.  Ultrafine-grain metals by severe plastic deformation , 2014 .

[18]  Ronald W. Armstrong,et al.  60 Years of Hall-Petch: Past to Present Nano-Scale Connections , 2014 .

[19]  T. Langdon Twenty-five years of ultrafine-grained materials: achieving exceptional properties through grain refinement , 2013 .

[20]  Y. Estrin,et al.  Extreme grain refinement by severe plastic deformation: A wealth of challenging science , 2013 .

[21]  N. Gao,et al.  Enhanced strength–ductility synergy in nanostructured Cu and Cu–Al alloys processed by high-pressure torsion and subsequent annealing , 2012 .

[22]  Roberto B. Figueiredo,et al.  Ultrafine grains and the Hall-Petch relationship in an Al-Mg-Si alloy processed by high-pressure torsion , 2012 .

[23]  N. Gao,et al.  Significance of stacking fault energy on microstructural evolution in Cu and Cu–Al alloys processed by high-pressure torsion , 2011 .

[24]  Nishant Kumar,et al.  Critical grain size for change in deformation behavior in ultrafine grained Al–Mg–Sc alloy , 2011 .

[25]  T. Langdon,et al.  Microstructural evolution in high purity aluminum processed by ECAP , 2009 .

[26]  N. Tsuji,et al.  Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed , 2009 .

[27]  Zujian Wang,et al.  Microstructural evolution and mechanical properties of Cu–Al alloys subjected to equal channel angular pressing , 2009 .

[28]  D. Bae,et al.  Positive Deviation from a Hall-Petch Relation in Nanocrystalline Aluminum , 2009 .

[29]  R. Kapoor,et al.  High strain rate behavior of ultrafine-grained Al–1.5 Mg , 2008 .

[30]  J. Schoenung,et al.  Strain softening in nanocrystalline or ultrafine-grained metals: A mechanistic explanation , 2008 .

[31]  Terence G. Langdon,et al.  Using high-pressure torsion for metal processing: Fundamentals and applications , 2008 .

[32]  N. Hansen,et al.  Strengthening mechanisms in nanostructured aluminum , 2008 .

[33]  Z. Ma,et al.  Friction Stir Processing Technology: A Review , 2008 .

[34]  N. Tsuji,et al.  Analysis of the mechanical properties and deformation behavior of nanostructured commercially pure Al processed by equal channel angular pressing (ECAP) , 2008 .

[35]  F. Micari,et al.  Severe Plastic Deformation (SPD) Processes for Metals , 2008 .

[36]  Sung Wook Chung,et al.  Influence of friction stir welding parameters on grain size and formability in 5083 aluminum alloy , 2007 .

[37]  M. Meyers,et al.  Microstructural evolution in copper subjected to severe plastic deformation: Experiments and analysis , 2007 .

[38]  G. Gray,et al.  The effect of grain size, strain rate, and temperature on the mechanical behavior of commercial purity aluminum , 2006 .

[39]  Xiaoxu Huang,et al.  Hardening by Annealing and Softening by Deformation in Nanostructured Metals , 2006, Science.

[40]  P. Kao,et al.  Transition of tensile deformation behaviors in ultrafine-grained aluminum , 2005 .

[41]  P. Sun,et al.  Influence of boundary characters on the tensile behavior of sub-micron-grained aluminum , 2005 .

[42]  W. Blum,et al.  Transition from strengthening to softening by grain boundaries in ultrafine-grained Cu , 2004 .

[43]  M. Imam,et al.  Effect of annealing twins on Hall–Petch relation in polycrystalline materials , 2004 .

[44]  E. Pereloma,et al.  An alternative physical explanation of the Hall–Petch relation , 2004 .

[45]  Hiroyuki Kokawa,et al.  Hall–Petch relationship in friction stir welds of equal channel angular-pressed aluminium alloys , 2003 .

[46]  N. Hansen,et al.  Microstructures and boundary populations in materials produced by equal channel angular extrusion , 2003 .

[47]  F. Barlat,et al.  Effect of texture and microstructure on strain hardening anisotropy for aluminum deformed in uniaxial tension and simple shear , 2003 .

[48]  N. Tsuji,et al.  Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing , 2002 .

[49]  D. Lloyd,et al.  Microstructure and strength of commercial purity aluminium (AA 1200) cold-rolled to large strains , 2002 .

[50]  Rajiv S. Mishra,et al.  Friction Stir Welding and Processing , 2007 .

[51]  R. Valiev,et al.  Bulk nanostructured materials from severe plastic deformation , 2000 .

[52]  H. Mughrabi On the Grain-Size Dependence of Metal Fatigue: Outlook on the Fatigue of Ultrafine-Grained Metals , 2000 .

[53]  R. Valiev,et al.  Microhardness measurements and the Hall-Petch relationship in an AlMg alloy with submicrometer grain size , 1996 .

[54]  T. Shibayanagi,et al.  Effect of grain size on grain orientations and grain boundary character distribution in recrystallized Al-0.3mass% Mg alloy , 1995 .

[55]  N. Hansen,et al.  Flow stress anisotropy in aluminium , 1990 .

[56]  N. Hansen,et al.  The Effect of Grain Size and Strain on the Tensile Flow Stress of Aluminium at Room Temperature , 1977 .

[57]  H. Fujita,et al.  The effect of grain size and deformation sub-structure on mechanical properties of polycrystalline aluminum , 1973 .