Personalization of tagging systems

Social media systems have encouraged end user participation in the Internet, for the purpose of storing and distributing Internet content, sharing opinions and maintaining relationships. Collaborative tagging allows users to annotate the resulting user-generated content, and enables effective retrieval of otherwise uncategorised data. However, compared to professional web content production, collaborative tagging systems face the challenge that end-users assign tags in an uncontrolled manner, resulting in unsystematic and inconsistent metadata. This paper introduces a framework for the personalization of social media systems. We pinpoint three tasks that would benefit from personalization: collaborative tagging, collaborative browsing and collaborative search. We propose a ranking model for each task that integrates the individual user's tagging history in the recommendation of tags and content, to align its suggestions to the individual user preferences. We demonstrate on two real data sets that for all three tasks, the personalized ranking should take into account both the user's own preference and the opinion of others.

[1]  Greg Linden,et al.  Amazon . com Recommendations Item-to-Item Collaborative Filtering , 2001 .

[2]  John Riedl,et al.  An algorithmic framework for performing collaborative filtering , 1999, SIGIR '99.

[3]  Wei-Ying Ma,et al.  Optimizing web search using web click-through data , 2004, CIKM '04.

[4]  George Karypis,et al.  Evaluation of Item-Based Top-N Recommendation Algorithms , 2001, CIKM '01.

[5]  George Karypis,et al.  Item-based top-N recommendation algorithms , 2004, TOIS.

[6]  Georgia Koutrika,et al.  Can social bookmarking improve web search? , 2008, WSDM '08.

[7]  Djoerd Hiemstra,et al.  Using language models for information retrieval , 2001 .

[8]  Bernardo A. Huberman,et al.  Usage patterns of collaborative tagging systems , 2006, J. Inf. Sci..

[9]  Ji-Rong Wen,et al.  WWW 2007 / Track: Search Session: Personalization A Largescale Evaluation and Analysis of Personalized Search Strategies ABSTRACT , 2022 .

[10]  Susan T. Dumais,et al.  Personalizing Search via Automated Analysis of Interests and Activities , 2005, SIGIR.

[11]  W. Bruce Croft,et al.  Query expansion using local and global document analysis , 1996, SIGIR '96.

[12]  Hector Garcia-Molina,et al.  Social tag prediction , 2008, SIGIR '08.

[13]  John D. Lafferty,et al.  A study of smoothing methods for language models applied to Ad Hoc information retrieval , 2001, SIGIR '01.

[14]  Paul-Alexandru Chirita,et al.  Personalized query expansion for the web , 2007, SIGIR.

[15]  Peter Mika Ontologies Are Us: A Unified Model of Social Networks and Semantics , 2005, International Semantic Web Conference.

[16]  Yang Song,et al.  Real-time automatic tag recommendation , 2008, SIGIR '08.

[17]  Djoerd Hiemstra,et al.  Bayesian extension to the language model for ad hoc information retrieval , 2003, SIGIR.

[18]  Peter Mika,et al.  Ontologies are us: A unified model of social networks and semantics , 2005, J. Web Semant..

[19]  Valentin Robu,et al.  The complex dynamics of collaborative tagging , 2007, WWW '07.

[20]  Thomas Hofmann,et al.  Latent semantic models for collaborative filtering , 2004, TOIS.

[21]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[22]  Gerhard Weikum,et al.  Efficient top-k querying over social-tagging networks , 2008, SIGIR '08.

[23]  Xin Li,et al.  Tag-based social interest discovery , 2008, WWW.

[24]  David A. Hull Using statistical testing in the evaluation of retrieval experiments , 1993, SIGIR.

[25]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[26]  Wei-Ying Ma,et al.  Query Expansion by Mining User Logs , 2003, IEEE Trans. Knowl. Data Eng..

[27]  Zheng Chen,et al.  Mining clickthrough data for collaborative web search , 2006, WWW '06.

[28]  Roelof van Zwol,et al.  Flickr tag recommendation based on collective knowledge , 2008, WWW.

[29]  Yi Zhang,et al.  Efficient bayesian hierarchical user modeling for recommendation system , 2007, SIGIR.

[30]  Yong Yu,et al.  Exploring folksonomy for personalized search , 2008, SIGIR '08.

[31]  Mor Naaman,et al.  HT06, tagging paper, taxonomy, Flickr, academic article, to read , 2006, HYPERTEXT '06.

[32]  Barry Smyth,et al.  Anonymous personalization in collaborative web search , 2006, Information Retrieval.

[33]  Xuehua Shen,et al.  Context-sensitive information retrieval using implicit feedback , 2005, SIGIR '05.

[34]  Tony Jebara,et al.  Machine learning: Discriminative and generative , 2006 .