Tubular electrode torch for capacitatively coupled helium microwave plasma as a spectrochemical excitation source

[1]  K. Ng,et al.  Solution nebulization into a low-power argon microwave-induced plasma for atomic emission spectrometry: study of synthetic ocean water , 1986 .

[2]  J. Carnahan,et al.  Determination of aqueous chloride by direct nebulization into a helium microwave induced plasma , 1985 .

[3]  G. Hieftje,et al.  Development of a Microwave-Induced Nitrogen Discharge at Atmospheric Pressure (MINDAP) , 1985 .

[4]  K. W. Baughman,et al.  A Review of Instrumentation Used to Generate Microwave-Induced Plasmas , 1984 .

[5]  J. Caruso,et al.  Characterization of a moderate-power microwave-induced plasma for direct solution nebulization of metal ions , 1984 .

[6]  J. Winefordner,et al.  Speciation of inorganic and organometallic compounds in solid biological samples by thermal vaporization and plasma emission spectrometry , 1983 .

[7]  G. Hieftje,et al.  Microwave-Supported Discharges , 1981 .

[8]  H. Haraguchi,et al.  A wavelength table for emission lines of non-metallic elements with transition assignments and relative intensities observed in an atmospheric pressure helium microwave-induced plasma , 1981 .

[9]  C. Beenakker,et al.  An assessment of a microwave-induced plasma generated in argon with a cylindrical TM010 cavity as an excitation source for emission spectrometric analysis of solutions , 1978 .

[10]  C.I.M. Beenakker,et al.  A cavity for microwave-induced plasmas operated in helium and argon at atmospheric pressure , 1976 .

[11]  G. F. Larson,et al.  Comparison of interelement effects in a microwave single electrode plasma and in a radiofrequency inductively coupled plasma , 1976 .

[12]  R. K. Skogerboe,et al.  Microwave Plasma Emission Spectrometry , 1976 .

[13]  F. Maessen,et al.  The influence of flow rate and pressure on the excitation conditions in low-pressure microwave induced plasmas , 1975 .

[14]  P. Boumans,et al.  A comparative investigation of some analytical performance characteristics of an inductively-coupled radio frequency plasma and a capacitively-coupled microwave plasma for solution analysis by emission spectrometry , 1975 .

[15]  R. Kniseley,et al.  Spectroscopic flame temperature measurements and their physical significance—I. Theoretical concepts—A critical review , 1973 .

[16]  R. K. Skogerboe,et al.  Emission spectrometric determination of trace amounts of mercury. , 1972, Analytical chemistry.

[17]  S. Murayama Effect of sodium on the intensity distribution of rare-earth elements in a 2469 MHz discharge , 1970 .

[18]  Manabu Yamamoto,et al.  Excitation of solutions in a 2450 MHz discharge , 1968 .

[19]  J. Runnels,et al.  Characteristics of low wattage microwave induced argon plasmas in metals excitation , 1967 .

[20]  K. Hirokawa,et al.  Spectrometric determination of various metals by high-frequency plasma torch , 1967 .

[21]  S. Murayama,et al.  UHF torch discharge as an excitation source , 1967 .

[22]  A. Mccormack,et al.  Sensitive Selective Gas Chromatography Detector Based on Emission Spectrometry of Organic Compounds. , 1965 .

[23]  D. Lisk,et al.  Determination of organophosphorus insecticide residues using the emission spectrometric detector. , 1965, Analytical chemistry.

[24]  H. P. Broida,et al.  Microwave Discharge Cavities Operating at 2450 MHz , 1964 .

[25]  R. Mavrodineanu,et al.  Excitation in radio-frequency discharges , 1963 .

[26]  U. Jecht,et al.  Beobachtungen und Untersuchungen an HF-Plasmaflammen , 1963 .

[27]  H. Broida,et al.  Stable Nitrogen Isotope Analysis by Optical Spectroscopy , 1958 .