Cyanobacterial Mats and Stromatolites

Cyanobacteria are often the key organisms comprising microbial mats. They form dense micrometer-scale communities in which the full plethora of microbial metabolism can be present. Such mats are therefore excellent model systems and because of their analogy with Precambrian stromatolites they are also attractive subjects for evolutionary studies. Growth and metabolism of the oxygenic phototrophic cyanobacteria enrich the sediment with organic matter. However, in mature mats net growth of cyanobacteria appears to be of less importance. Most of the organic matter produced from photosynthetic CO2 fixation is liberated in the sediment by one of the following: fermentation, photorespiration, pouring out of solutes or secretion of mucus although grazing may also be important. This organic matter is degraded by chemotrophic microorganisms, among which sulphate-reducing bacteria are particularly prominent. The combined activities of the cyanobacteria and sulphate-reducing bacteria result in steep and fluctuating gradients of sulphide and oxygen. Cyanobacteria therefore have to cope with high concentrations of sulphide, oxygen supersaturated – and anoxic conditions. These physicochemical gradients force different functional groups of microorganisms to particular vertical stratified positions in the mat. This, and the fact that accretion of sediment fluctuates, gives rise to one of the most conspicuous properties of microbial mats namely their laminated structure. Modern microbial mats have this laminated structure in common with Precambrian stromatolites. Most modern mats do not lithify but this may also have been the case for Archean microbial mats. Only a few examples of modern calcifying stromatolithic microbial mats are known. A hypothesis has been developed which conceives a role for extracellular polysaccharides in calcification. Extracellular polysaccharides in cyanobacterial mats are often produced as the result of unbalanced growth caused by nitrogen deficiency. The mat organisms are embedded in the extensive polysaccharide matrix that inhibits calcification. All cyanobacterial mats can fix atmospheric dinitrogen, which covers part of their nitrogen demand, but the fluctuating physicochemical gradients limits the efficiency of this process.

[1]  H. Paerl,et al.  Clarification of the structural and functional roles of heterocysts and anoxic microzones in the control of pelagic nitrogen fixation , 1995 .

[2]  John,et al.  Formation of lithified micritic laminae in modern marine stromatolites (Bahamas); the role of sulfur cycling , 1998 .

[3]  J. William Schopf,et al.  The Proterozoic biosphere : a multidisciplinary study , 1992 .

[4]  F. Widdel,et al.  Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism , 1994, Applied and environmental microbiology.

[5]  R. Castenholz,et al.  Diel Migrations of Microorganisms within a Benthic, Hypersaline Mat Community , 1994, Applied and environmental microbiology.

[6]  T. D. Brock EFFECT OF WATER POTENTIAL ON A MICROCOLEUS (CYANOPHYCEAE) FROM A DESERT CRUST 1 , 1975 .

[7]  M. G. Lorenz,et al.  Bacterial gene transfer by natural genetic transformation in the environment. , 1994, Microbiological reviews.

[8]  F. Widdel,et al.  Ferrous iron oxidation by anoxygenic phototrophic bacteria , 1993, Nature.

[9]  H. Marchant,et al.  Seasonal variation in nitrogen fixation by Nostoc commune Vaucher at the Vestfold Hills, Antarctica , 1983 .

[10]  H. Paerl,et al.  Nitrogen cycling in microbial mats: rates and patterns of denitrification and nitrogen fixation , 1994 .

[11]  W. Lange Speculations on a possible essential function of the gelatinous sheath of blue-green algae. , 1976, Canadian journal of microbiology.

[12]  G. C. Bate,et al.  A review of the ecology of surf-zone diatoms, with special reference to Anaulus australis , 1990 .

[13]  A. Oren The microbial ecology of the dead sea , 1988 .

[14]  J. Kjosbakken,et al.  Partial Chemical and Physical Characterization of Two Extracellular Polysaccharides Produced by Marine, Periphytic Pseudomonas sp. Strain NCMB 2021 , 1985, Applied and environmental microbiology.

[15]  R. Morrison Determination of Nitrogen , 1966, Nature.

[16]  F. Garcia-Pichel,et al.  Polyphasic characterization of benthic, moderately halophilic, moderately thermophilic cyanobacteria with very thin trichomes and the proposal of Halomicronemaexcentricum gen. nov., sp. nov. , 2002, Archives of Microbiology.

[17]  W. Stewart,et al.  Nitrogen turnover in marine and brackish habitats III. The production of extracellular nitrogen by Calothrix scopulorum , 1969, Journal of the Marine Biological Association of the United Kingdom.

[18]  A. Borman The role in CaCO_3 crystallization of an acid Ca^ -binding polysaccharide associated with coccolith of Emiliania huxleyi. , 1982 .

[19]  Paula Tamagnini,et al.  Hydrogenases and Hydrogen Metabolism of Cyanobacteria , 2002, Microbiology and Molecular Biology Reviews.

[20]  D. Wolf-Gladrow,et al.  CO2 in Seawater: Equilibrium, Kinetics, Isotopes , 2001 .

[21]  A. Decho,et al.  Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes , 1990 .

[22]  H. Paerl,et al.  Potential N2 fixation by sulfate-reducing bacteria in a marine intertidal microbial mat , 2002 .

[23]  D. Häder Signal perception and amplification in photoresponses of cyanobacteria. , 1988, Biophysical chemistry.

[24]  G. Ferroni,et al.  The chemolithotrophic bacterium Thiobacillus ferrooxidans , 1994 .

[25]  D. D. Marais,et al.  Comparative functional ultrastructure of two hypersaline submerged cyanobacterial mats - Guerrero Negro, Baja California Sur, Mexico, and Solar Lake, Sinai, Egypt , 1989 .

[26]  David M. Ward,et al.  Photoexcretion and Fate of Glycolate in a Hot Spring Cyanobacterial Mat , 1988, Applied and environmental microbiology.

[27]  F. Garcia-Pichel,et al.  Hydrotaxis of Cyanobacteria in Desert Crusts , 2004, Microbial Ecology.

[28]  B. Schink,et al.  Hydrogen formation from glycolate driven by reversed electron transport in membrane vesicles of a syntrophic glycolate-oxidizing bacterium. , 1993, European journal of biochemistry.

[29]  R. Reid,et al.  Intertidal stromatolites in a fringing Holocene reef complex, Bahamas , 1991 .

[30]  E. Flores,et al.  Assimilatory Nitrogen Metabolism and Its Regulation , 1994 .

[31]  Hans-Peter Schertl,et al.  Geochim. cosmochim. acta , 1989 .

[32]  Robert H. Reed,et al.  The compatibility of osmotica in cyanobacteria , 1988 .

[33]  S. Giovannoni,et al.  The microbial community in the layered sediments at Laguna Figueroa, Baja California, Mexico: Does it have Precambrian analogues? , 1980 .

[34]  P. Blackwelder,et al.  Biochemical and ultrastructural evidence for the origin of whitings: A biologically induced calcium carbonate precipitation mechanism , 1992 .

[35]  W Wackernagel,et al.  Adsorption of plasmid DNA to mineral surfaces and protection against DNase I , 1991, Applied and environmental microbiology.

[36]  D. Canfield,et al.  Cycling of carbon, sulfur, oxygen and nutrients in a microbial mat , 1994 .

[37]  L. Stal,et al.  Sulphate-limited growth in the N2 -fixing unicellular cyanobacterium Gloeothece (Nägeli) sp. PCC 6909. , 1994, The New phytologist.

[38]  D. M. Ward,et al.  Enrichment culture and microscopy conceal diverse thermophilic Synechococcus populations in a single hot spring microbial mat habitat , 1996, Applied and environmental microbiology.

[39]  P. S. Maryan,et al.  Nitrogen Fixation by Gloeothece sp. PCC 6909: Respiration and Not Photosynthesis Supports Nitrogenase Activity in the Light , 1986 .

[40]  M. Shilo,et al.  Characterization of Macromolecular Flocculants Produced by Phormidium sp. Strain J-1 and by Anabaenopsis circularis PCC 6720 , 1987, Applied and environmental microbiology.

[41]  B. Jørgensen,et al.  Action spectra of microalgal photosynthesis and depth distribution of spectral scalar irradiance in a coastal marine sediment of Limfjorden, Denmark , 1993 .

[42]  R. Fechner,et al.  Die Chemotaxis der Oscillarien und ihre Bewegungserscheinungen Uberhaupt.@@@Die Phototaxis der Oscillarien. , 1920 .

[43]  L. R. Mur,et al.  Growth Kinetics of Oscillatoria agardhii Gomont in Continuous Culture, Limited in its Growth by the Light Energy Supply , 1979 .

[44]  R. Castenholz,et al.  On the significance of solar ultraviolet radiation for the ecology of microbial mats , 1994 .

[45]  S. Kempe,et al.  Calcium carbonate supersaturation and the formation of in situ calcified stromatolites , 1990 .

[46]  A. Cairns-smith Precambrian solution photochemistry, inverse segregation, and banded iron formations , 1978, Nature.

[47]  M. Lehmann,et al.  Accumulation, Mobilization and Turnover of Glycogen in the Blue-Green Bacterium Anacystis nidulans , 1975 .

[48]  J. Gallon,et al.  Nitrogen fixation by Oscillatoria spp. under autotrophic and photoheterotrophic conditions , 1991 .

[49]  E. Hoiczyk,et al.  Gliding motility in cyanobacteria: observations and possible explanations , 2000, Archives of Microbiology.

[50]  Wolfgang E. Krumbein,et al.  Stromatolites—the Challenge of a Term in Space and Time , 1983 .

[51]  J. Serôdio,et al.  NONDESTRUCTIVE TRACING OF MIGRATORY RHYTHMS OF INTERTIDAL BENTHIC MICROALGAE USING IN VIVO CHLOROPHYLL A FLUORESCENCE 1, 2 , 1997 .

[52]  B. Griffin,et al.  Phototrophs in High-Iron-Concentration Microbial Mats: Physiological Ecology of Phototrophs in an Iron-Depositing Hot Spring , 1999, Applied and Environmental Microbiology.

[53]  N. Carr,et al.  The Biology of Blue-Green Algae , 1973 .

[54]  A. Kaplan,et al.  A model for inorganic carbon fluxes and photosynthesis in cyanobacterial carboxysomes , 1991 .

[55]  K. Pedersen,et al.  Autotrophic and mixotrophic growth of Gallionella ferruginea , 1991 .

[56]  P. Westbroek,et al.  COCCOLITH‐ASSOCIATED POLYSACCHARIDES FROM CELLS OF EMILIANIA HUXLEYI (HAPTOPHYCEAE) 1 , 1987 .

[57]  A. Walsby,et al.  Motility of the cyanobacterium Microcoleus chthonoplastes in mud , 1984 .

[58]  W. Dilling,et al.  Aerobic respiration in sulfate‐reducing bacteria* , 1990 .

[59]  H. Gemerden,et al.  Growth of the cyanobacterium Microcoleus chtonoplastes on sulfide , 1988 .

[60]  L. Stal Physiological ecology of cyanobacteria in microbial mats and other communities. , 1995, The New phytologist.

[61]  D. Canfield,et al.  Fate of elemental sulfur in an intertidal sediment , 1996 .

[62]  I. Sutherland Biofilm exopolysaccharides: a strong and sticky framework. , 2001, Microbiology.

[63]  K. Shephard Evaporation of water from the mucilage of a gelatinous algal community , 1987 .

[64]  B. Jørgensen,et al.  Optical properties of benthic photosynthetic communities: fiber-optic studies of cyanobacterial mats. , 1988, Limnology and oceanography.

[65]  B. Jørgensen,et al.  A Thiosulfate Shunt in the Sulfur Cycle of Marine Sediments , 1990, Science.

[66]  J. Wilson,et al.  Stromatolites at ∼3,500 Myr and a greenstone–granite unconformity in the Zimbabwean Archaean , 1981, Nature.

[67]  D. Häder,et al.  Effects of solar and ultraviolet radiation on motility, photomovement and pigmentation in filamentous, gliding cyanobacteria , 1991 .

[68]  R Buick,et al.  Archean molecular fossils and the early rise of eukaryotes. , 1999, Science.

[69]  Lorimer Gh,et al.  Ribulose diphosphate oxygenase. II. Further proof of reaction products and mechanism of action. , 1973 .

[70]  A. Walsby,et al.  Aerobic nitrogenase activity associated with a non-heterocystous filamentous cyanobacterium , 1979 .

[71]  J. G. Kuenen,et al.  Distribution of cultivated and uncultivated cyanobacteria and Chloroflexus-like bacteria in hot spring microbial mats , 1994, Applied and environmental microbiology.

[72]  D. H. Yaalon,et al.  Two Causes for Runoff Initiation on Microbiotic Crusts: Hydrophobicity and Pore Clogging , 1999 .

[73]  A. Kaplan,et al.  Physiological and Molecular Studies on the Response of Cyanobacteria to Changes in the Ambient Inorganic Carbon Concentration , 1994 .

[74]  P. Visscher,et al.  Production and Fate of Methylated Sulfur Compounds from Methionine and Dimethylsulfoniopropionate in Anoxic Salt Marsh Sediments , 1987, Applied and environmental microbiology.

[75]  R. Philippis,et al.  Exocellular polysaccharides from cyanobacteria and their possible applications , 1998 .

[76]  G. Lorimer,et al.  Ribulose-1,5-bisphosphate carboxylase-oxygenase. , 1983, Annual review of biochemistry.

[77]  S. Kempe,et al.  Satonda Crater Lake, Indonesia: Hydrogeochemistry and biocarbonates , 1993 .

[78]  A. Walsby The permeability of heterocysts to the gases nitrogen and oxygen , 1985, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[79]  B. Pierson,et al.  Spectral Irradiance and Distribution of Pigments in a Highly Layered Marine Microbial Mat , 1990, Applied and environmental microbiology.

[80]  B. Jørgensen,et al.  Transition from Anoxygenic to Oxygenic Photosynthesis in a Microcoleus chthonoplastes Cyanobacterial Mat , 1986, Applied and environmental microbiology.

[81]  H. Utkilen Thiosulphate as electron donor in the blue-green alga Anacystis nidulans. , 1976, Journal of general microbiology.

[82]  J. Gallon,et al.  N2 Fixation by non-heterocystous cyanobacteria , 1997 .

[83]  B. Jørgensen,et al.  Microelectrode studies of the photosynthesis and O2, H2S, and pH profiles of a microbial mat1 , 1983 .

[84]  C. Défarge,et al.  Kopara in Polynesian atolls: early stages of formation of calcareous stromatolites , 1994 .

[85]  W. Krumbein,et al.  Solar Lake (Sinai). 4. Stromatolitic cyanobacterial mats1 , 1977 .

[86]  M. Walter,et al.  Links between the rise of the metazoa and the decline of stromatolites , 1985 .

[87]  R. Reed,et al.  The responses of cyanobacteria to salt stress , 1988 .

[88]  B. Jørgensen,et al.  Spectral light measurements in microbenthic phototrophic communities with a fiber‐optic microprobe coupled to a sensitive diode array detector , 1992 .

[89]  L. Stal,et al.  Dark anaerobic nitrogen fixation (acetylene reduction) in the cyanobacterium Oscillatoria sp. , 1987 .

[90]  H. L. James,et al.  Banded Iron Formation: Distribution in Time and Paleoenvironmental Significance , 1982 .

[91]  M. Potts Desiccation tolerance of prokaryotes , 1994, Microbiological reviews.

[92]  L. Stal Coastal microbial mats: the physiology of a small-scale ecosystem , 2001 .

[93]  Robert H. Reed,et al.  Osmotic shock-induced release of low molecular weight metabolites from free-living and immobilized cyanobacteria , 1986 .

[94]  S. Somerville,et al.  The biochemistry and cell biology of photorespiration , 1986 .

[95]  D. Moore,et al.  Organic solute accumulation in osmotically stressed cyanobacteria , 1986 .

[96]  L. Stal,et al.  The effect of sulfide on nitrogen fixation in heterocystous and non-heterocystous cyanobacterial mat communities , 1996 .

[97]  H. Paerl,et al.  The role of microbes in accretion, lamination and early lithification of modern marine stromatolites , 2000, Nature.

[98]  C. C. Bowen,et al.  CYTOLOGY OF BLUE‐GREEN ALGAE. I. THE CELLS OF SYMPLOCA MUSCORUM , 1963 .

[99]  M. Shilo,et al.  The role of cell‐bound flocculants in coflocculation of benthic cyanobacteria with clay particles , 1988 .

[100]  L. Stal,et al.  Interactions between nitrogen fixation and oxegenic photosynthesis in a marine cyanobacterial mat , 1990 .

[101]  A. Decho,et al.  Bacterial exopolymer utilization by a harpacticoid copepod: A methodology and results , 1990 .

[102]  D. Z. Piper,et al.  Marine Phosphorite Deposits and the Nitrogen Cycle , 1975, Science.

[103]  N. Revsbech,et al.  Investigation of an Iron-Oxidizing Microbial Mat Community Located near Aarhus, Denmark: Field Studies , 1994, Applied and environmental microbiology.

[104]  W. Krumbein,et al.  Calcification in a coccoid cyanobacterium associated with the formation of desert stromatolites , 1979 .

[105]  W. Krumbein,et al.  Ultrastructure of a microbial mat-generated phosphorite , 1985 .

[106]  H. Westerhoff,et al.  INTERACTION OF NITROGEN FIXATION AND PHOSPHORUS LIMITATION IN APHANIZOMENON FLOS‐AQUAE (CYANOPHYCEAE) 1 , 1997 .

[107]  Raymond S. Norton,et al.  Organic Osmoregulatory Solutes in Cyanobacteria , 1984 .

[108]  P. Visscher,et al.  Rates of sulfate reduction and thiosulfate consumption in a marine microbial mat , 1992 .

[109]  N. James,et al.  Thrombolites and stromatolites; two distinct types of microbial structures , 1986 .

[110]  D. Hall,et al.  Mucilage acts to adhere cyanobacteria and cultured plant cells to biological and inert surfaces , 1986 .

[111]  R. Moezelaar,et al.  Fermentation and Sulfur Reduction in the Mat-Building Cyanobacterium Microcoleus chthonoplastes , 1996, Applied and environmental microbiology.

[112]  E. Friedmann,et al.  Cytology of long-term desiccation in the desert cyanobacterium Chroococcidiopsis (Chroococcales). , 1993, Phycologia.

[113]  David M. Ward,et al.  Formation and Fate of Fermentation Products in Hot Spring Cyanobacterial Mats , 1987, Applied and environmental microbiology.

[114]  D. Canfield,et al.  Carbonate Precipitation and Dissolution: Its Relevance to Fossil Preservation , 1991 .

[115]  C. Vogt,et al.  Alkali-labile precursors of dimethyl sulfide in marine benthic cyanobacteria , 1998, Archives of Microbiology.

[116]  F. Rougerie,et al.  PHOSPHORUS PATHWAYS IN ATOLLS: INTERSTITIAL NUTRIENT POOL, CYANOBACTERIAL ACCUMULATION AND CARBONATE-FLUORO-APATITE (CFA) PRECIPITATION , 1997 .

[117]  W. Krumbein Photolithotropic and chemoorganotrophic activity of bacteria and algae as related to beachrock formation and degradation (gulf of Aqaba, Sinai) , 1979 .

[118]  Donald R. Lowe,et al.  Stromatolites 3,400-Myr old from the Archean of Western Australia , 1980, Nature.

[119]  J. Bauer,et al.  Method for determining stable isotope ratios of dissolved organic carbon in interstitial and other natural marine waters. , 1991, Marine chemistry.

[120]  I. Friedmann,et al.  Desert Algae of the Negev (Israel) , 1967 .

[121]  M. Carlile,et al.  A microbial mat composed of iron bacteria. , 2000, Microbiology.

[122]  B. W. Logan,et al.  Cryptozoon and Associate Stromatolites from the Recent, Shark Bay, Western Australia , 1961, The Journal of Geology.

[123]  G. Murphy,et al.  Pigments, light penetration, and photosynthetic activity in the multi‐layered microbial mats of Great Sippewissett Salt Marsh, Massachusetts , 1987 .

[124]  R. Castenholz THE EFFECT OF SULFIDE ON THE BLUEGREEN ALGAE OF HOT SPRINGS. I. NEW ZEALAND AND ICELAND 1 , 1976 .

[125]  B. Bergman,et al.  Glycolate metabolism in cyanobacteria. III: Nitrogen controls excretion and metabolism of glycolate in Anabaena cylindrica , 1989 .

[126]  E. Padan,et al.  Quantum yields for oxygenic and anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[127]  Y. Cohen,et al.  Diurnal Cycles of Sulfate Reduction under Oxic Conditions in Cyanobacterial Mats , 1992, Applied and environmental microbiology.

[128]  L. Richardson,et al.  Enhanced Survival of the Cyanobacterium Oscillatoria terebriformis in Darkness under Anaerobic Conditions , 1987, Applied and environmental microbiology.

[129]  Pierson,et al.  Phototrophs in high iron microbial mats: microstructure of mats in iron-depositing hot springs. , 2000, FEMS microbiology ecology.

[130]  Bernard P. Boudreau,et al.  A comparison of closed- and open-system models for porewater pH and calcite-saturation state , 1993 .

[131]  A. Reimer,et al.  Largest known microbialites discovered in Lake Van, Turkey , 1991, Nature.

[132]  M. Badger,et al.  Photosynthesis and Inorganic Carbon Usage by the Marine Cyanobacterium, Synechococcus sp. , 1982, Plant physiology.

[133]  M. L. Ostrofsky,et al.  Diel Nitrogen Fixation by Cyanobacterial Surface Blooms in Sanctuary Lake, Pennsylvania , 1990, Applied and environmental microbiology.

[134]  F. Garcia-Pichel,et al.  UV B-Induced Vertical Migrations of Cyanobacteria in a Microbial Mat. , 1995, Applied and environmental microbiology.

[135]  B. Jørgensen,et al.  Microalgal photosynthesis and spectral scalar irradiance in coastal marine sediments of Limfjorden, Denmark , 1992 .

[136]  D. Häder,et al.  Effects of tropical solar radiation on the motility of filamentous cyanobacteria , 1993 .

[137]  L. Rabenhorst Dr. L. Rabenhorst's Kryptogamen-Flora von Deutschland, Österreich und der Schweiz , 1881 .

[138]  L. Stal,et al.  Isolation and Characterization of Cyanobacteria from a Marine Microbial Mat , 1985 .

[139]  F. Widdel,et al.  Survival of sulfate-reducing bacteria after oxygen stress, and growth in sulfate-free oxygen-sulfide gradients , 1985 .

[140]  J. Waterbury,et al.  A Cyanobacterium Capable of Swimming Motility , 1985, Science.

[141]  E. Rosenberg,et al.  Microbial mats : physiological ecology of benthic microbial communities , 1989 .

[142]  D. Stahl,et al.  Unexpected Population Distribution in a Microbial Mat Community: Sulfate-Reducing Bacteria Localized to the Highly Oxic Chemocline in Contrast to a Eukaryotic Preference for Anoxia , 1999, Applied and Environmental Microbiology.

[143]  T. R. Mason,et al.  3-Gyr-old stromatolites from South Africa , 1977, Nature.

[144]  G. Malin,et al.  Aerobic Nitrogen Fixation in Aggregate-forming Cultures of the Nonheterocystous Cyanobacterium Microcoleus chthonoplastes , 1988 .

[145]  G. Kidron,et al.  The role of cyanobacterial exopolysaccharides in structuring desert microbial crusts , 1996 .

[146]  A fibre‐optic scalar irradiance microsensor: application for spectral light measurements in sediments , 1992 .

[147]  L Bogorad,et al.  Photomovement of the Gliding Cyanobacterium Synechocystis sp. PCC 6803 , 1999, Photochemistry and photobiology.

[148]  E. Carpenter,et al.  Basis for Diel Variation in Nitrogenase Activity in the Marine Planktonic Cyanobacterium Trichodesmium thiebautii , 1990, Applied and environmental microbiology.

[149]  O. Warburg,et al.  Glykolsäurebildung in Chlorella , 1960 .

[150]  L. Stal,et al.  Diazotrophic growth of the unicellular cyanobacterium Gloeothece sp. PCC 6909 in continuous culture , 1991 .

[151]  R. Simon Inclusion bodies in the cyanobacteria: cyanophycin, polyphosphate, polyhedral bodies , 1987 .

[152]  Lucas J. Stal,et al.  Fermentation in cyanobacteria , 1997 .

[153]  T. D. Brock Thermophilic Microorganisms and Life at High Temperatures , 1978, Springer Series in Microbiology.

[154]  D. Stahl,et al.  Community structure of a microbial mat: the phylogenetic dimension. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[155]  J. Gallon,et al.  THE DIURNAL PATTERN OF DINITROGEN FIXATION BY CYANOBACTERIA IN SITU , 1987 .

[156]  F. Garcia-Pichel,et al.  Microbiology: Cyanobacteria track water in desert soils , 2001, Nature.

[157]  E. Friedmann,et al.  Effect of desiccation on envelopes of the cyanobacterium Chroococcidiopsis sp. (Chroococcales) , 1996 .

[158]  C. C. Black,et al.  The oxidative photosynthetic carbon cycle or C2 cycle , 1987 .

[159]  Niels B. Ramsing,et al.  Sulfate-Reducing Bacteria and Their Activities in Cyanobacterial Mats of Solar Lake (Sinai, Egypt) , 1998, Applied and Environmental Microbiology.

[160]  A. Pentecost,et al.  Nucleation of calcite on the sheaths of cyanobacteria using a simple diffusion cell , 1988 .

[161]  P. Visscher,et al.  Production and Consumption of Dimethylsulfoniopropionate in Marine Microbial Mats , 1991, Applied and environmental microbiology.

[162]  U. Fischer,et al.  Sulphite as Intermediate Sulphur Compound in Anaerobic Sulphide Oxidation to Thiosulphate by Marine Cyanobacteria , 1995 .

[163]  D. Rees,et al.  Structure, conformation, and mechanism in the formation of polysaccharide gels and networks. , 1969, Advances in carbohydrate chemistry and biochemistry.

[164]  De,et al.  Crinalium epi ' psammum sp . nov . : a filamentous cyanobacterium with trichomes composed of elliptical cells and containing polyp-( 1 , 4 ) glucan ( cellulose ) , 2022 .

[165]  K. Aida,et al.  Exocellular mucopolysaccharide closely related to bacterial floc formation , 1977, Applied and environmental microbiology.

[166]  L. Taiz,et al.  Plant Cell Expansion: Regulation of Cell Wall Mechanical Properties , 1984 .

[167]  A. Walsby,et al.  Chemotaxis of a cyanobacterium on concentration gradients of carbon dioxide, bicarbonate and oxygen , 1985 .

[168]  A. Pentecost Effects of Sedimentation and Light Intensity on Mat-forming Oscillatoriaceae with Particular Reference to Microcoleus lyngbyaceus Gomont , 1984 .

[169]  E. Flores,et al.  An ABC‐type, high‐affinity urea permease identified in cyanobacteria , 2002, Molecular microbiology.

[170]  C. Martens,et al.  Acetogenesis from CO2 in an anoxic marine sediment , 1999 .

[171]  B. T. Darling Continuation of Solutions and the Retarded Electromagnetic Fields in the Mathematical Formulation of Huygens' Principle , 1984 .

[172]  J. Waterbury,et al.  Generic assignments, strain histories, and properties of pure cultures of cyanobacteria , 1979 .

[173]  D. Turpin,et al.  CARBOXYSOME CONTENT OF SYNECHOCOCCUS LEOPOLIENSIS (CYANOPHYTA) IN RESPONSE TO INORGANIC CARBON 1 , 1984 .

[174]  M. Shilo,et al.  Photooxidation of cyanobacteria in natural conditions , 1976, Applied and environmental microbiology.

[175]  James P. Martin Decomposition and binding action of polysaccharides in soil , 1971 .

[176]  B. Jørgensen,et al.  Photosynthetic action spectra and adaptation to spectral light distribution in a benthic cyanobacterial mat , 1987, Applied and environmental microbiology.

[177]  M. Calvin,et al.  THE PATH OF CARBON IN PHOTOSYNTHESIS, XI THE ROLE OF GLYCOLIC ACID , 1950 .

[178]  Ernst Kalkowsky Oolith und Stromatolith im norddeutschen Buntsandstein. , 1908 .

[179]  Lisa R. Moore,et al.  Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus , 2002 .

[180]  N. Revsbech,et al.  Investigation of an Iron-Oxidizing Microbial Mat Community Located near Aarhus, Denmark: Laboratory Studies , 1994, Applied and environmental microbiology.

[181]  F. Tabita Molecular and cellular regulation of autotrophic carbon dioxide fixation in microorganisms. , 1988, Microbiological reviews.

[182]  H. Paerl,et al.  Oxygen-Poor Microzones as Potential Sites of Microbial N2 Fixation in Nitrogen-Depleted Aerobic Marine Waters , 1987, Applied and environmental microbiology.

[183]  Christian Défarge,et al.  On the appearance of cyanobacterial calcification in modern stromatolites , 1994 .

[184]  M. O'Leary,et al.  Carbon isotope effects on enzyme-catalyzed carboxylation of ribulose bisphosphate , 1984 .

[185]  M. Coleman,et al.  Cyanobacterial key to the genesis of micritic and peloidal limestones in ancient seas , 1996 .

[186]  R. Castenholz,et al.  Community structure and pigment organisation of cyanobacteria-dominated microbial mats in Antarctica , 1993 .

[187]  H. Paerl,et al.  Contemporaneous N2 Fixation and Oxygenic Photosynthesis in the Nonheterocystous Mat-Forming Cyanobacterium Lyngbya aestuarii , 1991, Applied and environmental microbiology.

[188]  Hans W. Paerl,et al.  Consortial N2 fixation: a strategy for meeting nitrogen requirements of marine and terrestrial cyanobacterial mats , 1996 .

[189]  J. Milliman Production and accumulation of calcium carbonate in the ocean: Budget of a nonsteady state , 1993 .

[190]  A. Reimer,et al.  Photosynthesis-Induced Biofilm Calcification and Calcium Concentrations in Phanerozoic Oceans , 2001, Science.

[191]  C. D. Gebelein Chapter 8.1 Open Marine Subtidal and Intertidal Stromatolites (Florida, The Bahamas and Bermuda) , 1976 .

[192]  G. E. Sroga Regulation of nitrogen fixation by different nitrogen sources in the filamentous non-heterocystous cyanobacterium Microcoleus sp. , 1997, FEMS microbiology letters.

[193]  W. Krumbein,et al.  Primary Production, Mat Formation and Lithification: Contribution of Oxygenic and Facultative Anoxygenic Cyanobacteria , 1977 .

[194]  J. Pierce Prospects for manipulating the substrate specificity of ribulose bisphosphate carboxylase/oxygenase , 1988 .

[195]  D. M. Ward,et al.  Photosynthate partitioning and fermentation in hot spring microbial mat communities , 1996, Applied and environmental microbiology.

[196]  Hidemi Watanabe,et al.  A genomic timescale for the origin of eukaryotes , 2001, BMC Evolutionary Biology.

[197]  C. Little,et al.  Subaerial exposure and changes in the stability of intertidal estuarine sediments , 1990 .

[198]  U. Ekanemesang,et al.  Characterization of metal-binding bioflocculants produced by the cyanobacterial component of mixed microbial mats , 1994, Applied and environmental microbiology.

[199]  W. Liesack,et al.  Phenotype variability of identical genotypes: the need for a combined approach in cyanobacterial taxonomy demonstrated on Merismopedia-like isolates , 1996, Archives of Microbiology.

[200]  G. Muyzer,et al.  Phenotypic and phylogenetic analyses show Microcoleus chthonoplastes to be a cosmopolitan cyanobacterium , 1996, Applied and environmental microbiology.

[201]  L. Stal Microbial mats in coastal environments , 1994 .

[202]  L. Stal,et al.  Crinalium epipsammum sp. nov.: a filamentous cyanobacterium with trichomes composed of elliptical cells and containing poly-β-(1,4) glucar (cellulose) , 1990 .

[203]  D. Häder Photosensory behavior in procaryotes. , 1987, Microbiological reviews.

[204]  H. Gemerden,et al.  Oxidation of sulfide to thiosulfate by Microcoleus chtonoplastes , 1987 .

[205]  R. Reed,et al.  PHYSIOLOGICAL RESPONSES OF RIVULARIA ATRA TO SALINITY: OSMOTIC ADJUSTMENT IN HYPOSALINE MEDIA , 1983 .

[206]  N. Ramsing,et al.  Motility of Microcoleus chthonoplastes subjected to different light intensities quantified by digital image analysis , 1994 .

[207]  H. Chafetz,et al.  Bacterially Induced Lithification of Microbial Mats , 1992 .

[208]  B. Bergman,et al.  The presence and expression of hetR in the non-heterocystous cyanobacterium Symploca PCC 8002. , 1998, FEMS microbiology letters.

[209]  G. Lorimer,et al.  The Carboxylation and Oxygenation of Ribulose 1,5-Bisphosphate: The Primary Events in Photosynthesis and Photorespiration , 1981 .

[210]  H. Gemerden,et al.  Mathematical simulation of the interactions among cyanobacteria, purple sulfur bacteria and chemotrophic sulfur bacteria in microbial mat communities , 1995 .

[211]  D. D. Marais,et al.  Depositional facies and aqueous-solid geochemistry of travertine-depositing hot springs (Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, U.S.A.). , 2001, Journal of sedimentary research. Section A, Sedimentary petrology and processes : an international journal of SEPM.

[212]  G. Eglinton,et al.  Taphonomy: Releasing the data locked in the fossil record , 1991 .

[213]  S. Kempe,et al.  Chemistry and stromatolites of the sea-linked Satonda Crater Lake, Indonesia: A recent model for the Precambrian sea? , 1990 .

[214]  H. Paerl,et al.  Diversity of heterotrophic nitrogen fixation genes in a marine cyanobacterial mat , 1995, Applied and environmental microbiology.

[215]  L. Stal,et al.  Low‐molecular mass carbohydrate accumulation in cyanobacteria from a marine microbial mat in response to salt , 1987 .

[216]  P. Westbroek,et al.  Strategies for the study of climate forcing by calcification , 1994 .

[217]  T. Neu MICROBIAL FOOTPRINTS AND THE GENERAL ABILITY OF MICROORGANISMS TO LABEL INTERFACES , 1992 .

[218]  W. W. Wood,et al.  Hydrogeologic processes in saline systems: playas, sabkhas, and saline lakes , 2002 .

[219]  J. Waterbury,et al.  The synthesis of nitrogenase by non-heterocystous cyanobacteria , 1977 .

[220]  Geoffrey D. Smith,et al.  Is cyanophycin involved in the integration of nitrogen and carbon metabolism in the cyanobacteria Anabaena cylindrica and Gleothece grown on light/dark cycles? , 1990 .

[221]  F. Garcia-Pichel,et al.  Penetration of ultraviolet radiation into shallow water sediments: high exposure for photosynthetic communities , 1996 .

[222]  C. Monty Chapter 5.1 The Origin and Development of Cryptalgal Fabrics , 1976 .

[223]  L. Navarini,et al.  Polysaccharides from cyanobacteria , 1990 .

[224]  R. Castenholz,et al.  CHARACTERIZATION AND BIOLOGICAL IMPLICATIONS OF SCYTONEMIN, A CYANOBACTERIAL SHEATH PIGMENT 1 , 1991 .

[225]  R. Castenholz,et al.  ANTARCTIC CYANOBACTERIA: LIGHT, NUTRIENTS, AND PHOTOSYNTHESIS IN THE MICROBIAL MAT ENVIRONMENT 1 , 1993 .

[226]  B. Jørgensen,et al.  Solar Lake (Sinai). 5. The sulfur cycle of the bcnthic cyanobacterial mats1 , 1977 .

[227]  B. Jørgensen,et al.  Adaptation to Hydrogen Sulfide of Oxygenic and Anoxygenic Photosynthesis among Cyanobacteria , 1986, Applied and environmental microbiology.

[228]  D. Häder,et al.  Effects on aquatic ecosystems , 1998 .

[229]  L. Stal,et al.  Aerobic nitrogen fixation in pure cultures of a benthic marine Oscillatoria (cyanobacteria) , 1981 .

[230]  H. Gemerden Microbial mats: A joint venture , 1993 .

[231]  I. E. Woodrow,et al.  Control of photosynthetic carbon dioxide fixation by the boundary layer, stomata and ribulose 1,5‐biphosphate carboxylase/oxygenase , 1990 .

[232]  John F. Stolz,et al.  Structure of a microbiol mat at Great Sippewissett Marsh, Cape Cod, Massachusetts , 1987 .

[233]  J. P. Houchins The physiology and biochemistry of hydrogen metabolism in cyanobacteria , 1984 .

[234]  J. Gallon,et al.  Acetylene reduction (nitrogen fixation) by cyanobacteria grown under alternating light-dark cycles , 1981 .

[235]  David M. Paterson,et al.  Short‐term changes in the erodibility of intertidal cohesive sediments related to the migratory behavior of epipelic diatoms , 1989 .

[236]  U. Karsten GROWTH AND ORGANIC OSMOLYTES OF GEOGRAPHICALLY DIFFERENT ISOLATES OF MICROCOLEUS CHTHONOPLASTES (CYANOBACTERIA) FROM BENTHIC MICROBIAL MATS:RESPONSE TO SALINITY CHANGE 1 , 1996 .

[237]  W. H. Patrick,et al.  Strengite Dissolution in Flooded Soils and Sediments , 1973, Science.

[238]  H. Paerl,et al.  Heterocystous versus non-heterocystous cyanobacteria in microbial mats , 1994 .

[239]  L. Stal,et al.  The Role of Oxygenic Phototrophic Microorganisms in Production and Conversion of Dimethylsulfoniopropioniate and Dimethylsulfide in Microbial Mats , 1996 .

[240]  M. Walter,et al.  Stromatolites 3,400–3,500 Myr old from the North Pole area, Western Australia , 1980, Nature.

[241]  R. Reed,et al.  Osmotic Adjustment of Cyanobacteria: The Effects of NaCl, KCl, Sucrose and Glycine Betaine on Glutamine Synthetase Activity in a Marine and a Halotolerant Strain , 1984 .

[242]  P. Liss,et al.  The seasonal variation of dimethyl sulfide and dimethylsulfoniopropionate concentrations in nearshore waters1 , 1988 .

[243]  L. Richardson,et al.  Chemokinetic Motility Responses of the Cyanobacterium Oscillatoria terebriformis , 1989, Applied and environmental microbiology.

[244]  K. Baker,et al.  Ozone depletion: ultraviolet radiation and phytoplankton biology in antarctic waters. , 1992, Science.

[245]  D. Canfield,et al.  Aerobic sulfate reduction in microbial mats. , 1991, Science.

[246]  H. Paerl,et al.  Ubiquity of heterotrophic diazotrophs in marine microbial mats , 1999 .

[247]  H. Paerl,et al.  Seasonal nitrogen fixation dynamics in a marine microbial mat: Potential roles of cyanobacteria and microheterotrophs , 1996 .

[248]  F. Widdel,et al.  Anaerobic, nitrate-dependent microbial oxidation of ferrous iron , 1996, Applied and Environmental Microbiology.

[249]  R. Castenholz,et al.  GLIDING MOTILITY IN THE BLUE‐GREEN ALGA OSCILLATORIA PRINCEPS1 , 1971 .

[250]  D. D. Marais,et al.  The role of microbial mats in the production of reduced gases on the early Earth , 2001, Nature.

[251]  A. Gerbaud,et al.  An evaluation of the recycling in measurements of photorespiration. , 1987, Plant physiology.

[252]  B. Bergman,et al.  Glycolate metabolism in cyanobacteria. IV. Uptake, growth and metabolic pathways , 1990 .

[253]  T. Hansen,et al.  Betaine Fermentation and Oxidation by Marine Desulfuromonas Strains , 1989, Applied and environmental microbiology.

[254]  Geoffrey D. Smith,et al.  Transient accumulations of cyanophycin in Anabaena cylindrica and Synechocystis 6308 , 1990 .

[255]  R. Reid,et al.  Microscale observations of sulfate reduction: Correlation of microbial activity with lithified micritic laminae in modern marine stromatolites , 2000 .

[256]  D. Canfield,et al.  The carbon isotope biogeochemistry of microbial mats , 1994 .

[257]  A. Pentecost Growth and Calcification of the Cyanobacterium Homoeothrix crustacea , 1988 .

[258]  P. Visscher,et al.  Sulfur Cycling in Laminated Marine Microbial Ecosystems , 1993 .

[259]  H. Gemerden,et al.  Laminated microbial ecosystems on sheltered beaches in Scapa Flow, Orkney Islands , 1989 .

[260]  D. Paterson,et al.  Comparative structure, primary production and biogenic stabilization of cohesive and non-cohesive marine sediments inhabited by microphytobenthos , 1994 .

[261]  O. Warburg Über die Geschwindigkeit der photochemischen Kohlensäurezersetzung in lebenden Zellen. II , 1928 .

[262]  H. Pearson,et al.  pH dependent sulphide toxicity to oxygenic photosynthesis in cyanobacteria , 1979 .

[263]  D. M. Ward,et al.  Species diversity in hot spring microbial mats as revealed by both molecular and enrichment culture approaches — relationship between biodiversity and community structure , 1994 .

[264]  L. Richardson,et al.  Diel Vertical Movements of the Cyanobacterium Oscillatoria terebriformis in a Sulfide-Rich Hot Spring Microbial Mat , 1987, Applied and environmental microbiology.

[265]  L. Stal,et al.  STRUCTURE AND DEVELOPMENT OF A BENTHIC MARINE MICROBIAL MAT , 1985 .

[266]  B. Jørgensen,et al.  Diurnal Cycle of Oxygen and Sulfide Microgradients and Microbial Photosynthesis in a Cyanobacterial Mat Sediment , 1979, Applied and environmental microbiology.

[267]  D. Rees,et al.  Nitrogenase: a nucleotide-dependent molecular switch. , 1994, Annual review of biochemistry.

[268]  P. Cloud,et al.  Proterozoic stromatolite zonation , 1969 .

[269]  B. Jørgensen,et al.  Photosynthesis and structure of benthic microbial mats: Microelectrode and SEM studies of four cyanobacterial communities1 , 1983 .

[270]  E. de Jong,et al.  The role in CaCO3 crystallization of an acid Ca2+-binding polysaccharide associated with coccoliths of Emiliania huxleyi. , 1982, European journal of biochemistry.

[271]  A. Decho Microbial biofilms in intertidal systems: an overview , 2000 .

[272]  L. Stal,et al.  Nitrogen fixation associated with the cyanobacterial mat of a marine laminated microbial ecosystem , 1984 .

[273]  E. Padan,et al.  Occurrence of facultative anoxygenic photosynthesis among filamentous and unicellular cyanobacteria , 1977, Journal of bacteriology.