Propuesta de métricas para proyectos de explotación de información

Diego Martin Basso 1, 2, 3 1. Maestria en Ingenieria de Sistemas de Informacion. Universidad Tecnologica Nacional, FRBA Buenos Aires, Argentina 2. Grupo de Investigacion en Sistemas de Informacion. Universidad Nacional de Lanus Remedios de Escalada, Argentina 3. Departamento de Ingenieria e Investigaciones Tecnologicas. Universidad Nacional de La Matanza San Justo Argentina diebasso@yahoo.com.ar

[1]  Robert Cooley,et al.  The use of web structure and content to identify subjectively interesting web usage patterns , 2003, TOIT.

[2]  Jun-Jang Jeng,et al.  Process information factory: a data management approach for enhancing business process intelligence , 2004, Proceedings. IEEE International Conference on e-Commerce Technology, 2004. CEC 2004..

[3]  Ernestina Menasalvas Ruiz,et al.  A cost model to estimate the effort of data mining projects (DMCoMo) , 2008, Inf. Syst..

[4]  Jan M. Zytkow,et al.  Handbook of Data Mining and Knowledge Discovery , 2002 .

[5]  Diane Manlove,et al.  In-process metrics for software testing , 2001, IBM Syst. J..

[6]  Jaideep Srivastava,et al.  Web usage mining: discovery and applications of usage patterns from Web data , 2000, SKDD.

[7]  Claudia Screpnik Métricas aplicables a la evaluación de sitios e-government y su impacto social , 2013 .

[8]  Thomas Reinartz,et al.  CRISP-DM 1.0: Step-by-step data mining guide , 2000 .

[9]  D. Rodriguez,et al.  Work in progress - programming misunderstandings discovering process based on intelligent data mining tools , 2008, 2008 38th Annual Frontiers in Education Conference.

[10]  Joc Sanders,et al.  Software quality - a framework for success in software development and support , 1994 .

[11]  Philip S. Yu,et al.  Data Mining: An Overview from a Database Perspective , 1996, IEEE Trans. Knowl. Data Eng..

[12]  Lior Rokach,et al.  Data Mining And Knowledge Discovery Handbook , 2005 .

[13]  Lionel C. Briand,et al.  A Unified Framework for Cohesion Measurement in Object-Oriented Systems , 2004, Empirical Software Engineering.

[14]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[15]  Peter A. Flach,et al.  Subgroup Discovery with CN2-SD , 2004, J. Mach. Learn. Res..

[16]  Jaideep Srivastava,et al.  Creating adaptive Web sites through usage-based clustering of URLs , 1999, Proceedings 1999 Workshop on Knowledge and Data Engineering Exchange (KDEX'99) (Cat. No.PR00453).

[17]  Dr. Alex A. Freitas Data Mining and Knowledge Discovery with Evolutionary Algorithms , 2002, Natural Computing Series.

[18]  Cristina L. Greiner,et al.  Modelos y métricas para evaluar calidad de software , 2009 .

[19]  Óscar Marbán Gallego Modelo matemático paramétrico de estimación para proyectos de data mining , 2011 .

[20]  Wynne Hsu,et al.  Analyzing the Subjective Interestingness of Association Rules , 2000, IEEE Intell. Syst..

[21]  Paola Britos,et al.  Bayesian Networks Optimization Based on Induction Learning Techniques , 2008, IFIP AI.

[22]  Foster Provost,et al.  On Applied Research in Machine Learning , 1998 .

[23]  Rich Caruana,et al.  An empirical comparison of supervised learning algorithms , 2006, ICML.

[24]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[25]  Ian H. Witten,et al.  Data Mining: Practical Machine Learning Tools and Techniques, 3/E , 2014 .

[26]  Daniel T. Larose,et al.  Discovering Knowledge in Data: An Introduction to Data Mining , 2005 .

[27]  Pablo Pytel,et al.  PROCESOS DE EXPLOTACIÓN DE INFORMACIÓN BASADOS EN SISTEMAS INTELIGENTES INFORMATION MINING PROCESSES BASED ON INTELLIGENT SYSTEMS , 2008 .

[28]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[29]  Xiaolong Su,et al.  An improved K-Means clustering algorithm , 2010, 2011 IEEE 3rd International Conference on Communication Software and Networks.

[30]  Karthikeyan Umapathy,et al.  Towards Co-Design of Business Processes and Information Systems Using Web Services , 2007, 2007 40th Annual Hawaii International Conference on System Sciences (HICSS'07).

[31]  Jorge González,et al.  La norma ISO 9001 en una fábrica de software a la medida , 1998 .

[32]  Stephen H. Kan,et al.  Metrics and Models in Software Quality Engineering , 1994, SOEN.

[33]  Ajith Abraham,et al.  Business Intelligence from Web Usage Mining , 2003, J. Inf. Knowl. Manag..

[34]  María Florencia Pollo Cattaneo,et al.  Estimación empírica de carga de trabajo en proyectos de explotación de información , 2010 .

[35]  Roger S. Pressman,et al.  Ingeniería del software: un enfoque práctico , 1998 .

[36]  Alberto Sillitti,et al.  PROM : TAKING AN ECHOGRAPHY OF YOUR SOFTWARE PROCESS , 2007 .

[37]  Norman E. Fenton,et al.  Software metrics: successes, failures and new directions , 1999, J. Syst. Softw..

[38]  Paola Britos,et al.  Conceptualization Maturity Metrics for Expert Systems , 2006, IFIP AI.

[39]  David Maxwell Chickering,et al.  Learning Bayesian Networks: The Combination of Knowledge and Statistical Data , 1994, Machine Learning.

[40]  Paola Britos,et al.  Métricas de Madurez en Conceptualización de Sistemas Expertos , 2008, JIISIC.

[41]  Paola Britos,et al.  Information Mining Processes Based on Intelligent Systems , 2013, IEA/AIE.

[42]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[43]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[44]  Sebastian Martins DERIVACIÓN DEL PROCESO DE EXPLOTACIÓN DE INFORMACIÓN DESDE EL MODELADO DEL NEGOCIO , 2014 .

[45]  Joseph M. Firestone Knowledge Management Metrics Development: A Technical Approach , 1998 .

[46]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[47]  Richard E. Fairley Recent advances in software estimation techniques , 1992, International Conference on Software Engineering.