Reconfiguration Strategies for Parallel Architectures

Communication paths between parallelarchitecture resources can be reconfigured to suit new computational structures; however, this capability places new demands on efficient architecture use. In the past decade a significant amount of research focused on the development of highly parallel architectures.' Progress in research on Very-Large-Scale-Integrated-Circuit (VLSI) and Very-High-Speed-Integrated-Circuit (VHSIC) technologies is making it feasible to consider the construction ofcomplex parallel architectures that comprise a number of processors communicating by means of a high-bandwidth interconnection network. (Two often-proposed organizations, the processor-memory and the processor-processor network, are shown in Figure 1.) By utilizing a large number of such processors, these architectures have the potential to provide enormous throughputs leading to the computation of processes previously considered impractical due to their complexity. However, the availability of multiple processors alone is not sufficient to ensure practical solutions to computationally intensive tasks. One of several modes of operation may be de-

[1]  William G. Poole,et al.  An algorithm for reducing the bandwidth and profile of a sparse matrix , 1976 .

[2]  Tse-Yun Feng,et al.  Star: A Local Network System for Real-Time Management of Imagery Data , 1982, IEEE Transactions on Computers.

[3]  Frank Thomson Leighton,et al.  Wafer-scale integration of systolic arrays , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[4]  Woei Lin,et al.  Configuring Computation Tree Topologies on a Distributed Computing System , 1983, ICPP.

[5]  Howard Jay Siegel,et al.  Modifications to improve the fault tolerance of the extra stage cube interconnection network , 1984 .

[6]  H. T. Kung,et al.  Systolic Arrays for (VLSI). , 1978 .

[7]  Svetlana P. Kartashev,et al.  Efficient Internode Communications in Reconfigurable Binary Trees , 1984, IEEE Transactions on Computers.

[8]  Kai Hwang,et al.  Packet Switching Networks for Multiprocessors and Data Flow Computers , 1984, IEEE Transactions on Computers.

[9]  W. Morven Gentleman,et al.  Some Complexity Results for Matrix Computations on Parallel Processors , 1978, JACM.

[10]  Benny Lautrup,et al.  Monte Carlo methods in theoretical high-energy physics , 1985, CACM.

[11]  Nils J. Nilsson,et al.  Artificial Intelligence Prepares for 2001 , 1983, AI Mag..

[12]  Charles E. Leiserson Systolic Priority Queues , 1979 .

[13]  Svetlana P. Kartashev,et al.  Reconfigurable multicomputer networks for very fast real-time applications , 1899, AFIPS '82.

[14]  H. T. Kung,et al.  The Design of Special-Purpose VLSI Chips , 1980, Computer.

[15]  H. T. Kung,et al.  Numerically Stable Solution of Dense Systems of Linear Equations Using Mesh-Connected Processors , 1984 .

[16]  Ralph Grishman,et al.  The NYU Ultracomputer—Designing an MIMD Shared Memory Parallel Computer , 1983, IEEE Transactions on Computers.

[17]  H. T. Kung,et al.  A Systolic 2-D Convolution Chip. , 1981 .

[18]  James C. Browne,et al.  Resource allocation in rectangular SW banyans , 1982, ISCA '82.

[19]  Israel Koren A reconfigurable and fault-tolerant VLSI multiprocessor array , 1981, ISCA '81.

[20]  Svetlana P. Kartashev,et al.  Adptable Architectures for Supersystems , 1980, Computer.

[21]  H. T. Kung,et al.  Matrix Triangularization By Systolic Arrays , 1982, Optics & Photonics.

[22]  Howard Jay Siegel The Theory Underlying the Partitioning of Permutation Networks , 1980, IEEE Transactions on Computers.

[23]  C. L. Liu,et al.  Introduction to Combinatorial Mathematics. , 1971 .

[24]  H. T. Kung Special-purpose devices for signal and image processing : an opportunity in VLSI , 1980 .

[25]  Allan L. Fisher Systolic Algorithms for Running Order Statistics in Signal and Image Processing , 1981 .

[26]  Tse-Yun Feng,et al.  On a Class of Multistage Interconnection Networks , 1980, IEEE Transactions on Computers.

[27]  A. Gottleib,et al.  The nyu ultracomputer- designing a mimd shared memory parallel computer , 1983 .

[28]  H. T. Kung,et al.  Wafer-scale integration and two-level pipelined implementations of systolic arrays , 1984, J. Parallel Distributed Comput..

[29]  Melvin A. Breuer,et al.  On Area and Yield Considerations for Fault-Tolerant VLSI Processor Arrays , 1984, IEEE Transactions on Computers.

[30]  Duncan H. Lawrie,et al.  Access and Alignment of Data in an Array Processor , 1975, IEEE Transactions on Computers.

[31]  Al Davis,et al.  A Wavefront Notation Tool for VLSI Array Design , 1981 .

[32]  Tilak Agerwala,et al.  Communication Issues in the Design and Analysis of Parallel Algorithms , 1981, IEEE Transactions on Software Engineering.

[33]  J. C. Browne,et al.  Resource allocation in rectangular SW banyans , 1982, ISCA 1982.

[34]  H. T. Kung Let's Design Algorithms for VLSI Systems , 1979 .

[35]  Peter J. Varman,et al.  Fault-tolerant wafer-scale architectures for VLSI , 1982, ISCA '82.

[36]  Howard Jay Siegel,et al.  The Extra Stage Cube: A Fault-Tolerant Interconnection Network for Supersystems , 1982, IEEE Transactions on Computers.

[37]  Larry Rudolph,et al.  Basic Techniques for the Efficient Coordination of Very Large Numbers of Cooperating Sequential Processors , 1983, TOPL.

[38]  Jon Louis Bentley,et al.  Multidimensional Binary Search Trees in Database Applications , 1979, IEEE Transactions on Software Engineering.

[39]  G. Jack Lipovski,et al.  Design and implementation of the banyan interconnection network in TRAC , 1980, AFIPS '80.

[40]  Lawrence Snyder,et al.  Introduction to the configurable, highly parallel computer , 1982, Computer.

[41]  Shahid H. Bokhari,et al.  On the Mapping Problem , 1981, IEEE Transactions on Computers.

[42]  Philip L. Lehman A Systolic (VLSI) Array for Processing Simple Relational Queries , 1981 .

[43]  Kai Hwang,et al.  Packet Switching Networks for Multiprocessors and Data Flow Computers , 1984, IEEE Trans. Computers.

[44]  Robert H. Swendsen,et al.  Statistical mechanics and disordered systems , 1985, CACM.

[45]  Arnold L. Rosenberg,et al.  Three-Dimensional VLSI: a case study , 1983, JACM.

[46]  H. T. Kung,et al.  A tree machine for searching problems , 1979 .

[47]  H. T. Kung Why systolic architectures? , 1982, Computer.

[48]  R.C. Aubusson,et al.  Wafer-scale integration-a fault-tolerant procedure , 1978, IEEE Journal of Solid-State Circuits.

[49]  Tse-Yun Feng,et al.  The Reverse-Exchange Interconnection Network , 1980, IEEE Trans. Computers.

[50]  Elizabeth Cuthill,et al.  Several Strategies for Reducing the Bandwidth of Matrices , 1972 .