Simulation from the Tail of the Univariate and Multivariate Normal Distribution

We study and compare various methods to generate a random variate or vector from the univariate or multivariate normal distribution truncated to some finite or semi-infinite region, with special attention to the situation where the regions are far in the tail. This is required in particular for certain applications in Bayesian statistics, such as to perform exact posterior simulations for parameter inference, but could have many other applications as well. We distinguish the case in which inversion is warranted, and that in which rejection methods are preferred.

[1]  G. Marsaglia Generating a Variable from the Tail of the Normal Distribution , 1964 .

[2]  Dirk P. Kroese,et al.  Handbook of Monte Carlo Methods , 2011 .

[3]  Wolfgang Hörmann,et al.  Automatic Nonuniform Random Variate Generation , 2011 .

[4]  Pierre L'Ecuyer,et al.  Quasi-Monte Carlo methods with applications in finance , 2008, Finance Stochastics.

[5]  I. R. Savage Mill's ratio for multivariate normal distributions , 1962 .

[6]  C. Edwards,et al.  Rational Chebyshev approximations for the inverse of the error function , 1976 .

[7]  Enkelejd Hashorva,et al.  On multivariate Gaussian tails , 2003 .

[8]  Nicolas Chopin,et al.  Fast simulation of truncated Gaussian distributions , 2011, Stat. Comput..

[9]  Pierre L'Ecuyer,et al.  Random number generation with multiple streams for sequential and parallel computing , 2015, 2015 Winter Simulation Conference (WSC).

[10]  John Marsaglia,et al.  Rapid evaluation of the inverse of the normal distribution function , 1994 .

[11]  John P. Mills TABLE OF THE RATIO: AREA TO BOUNDING ORDINATE, FOR ANY PORTION OF NORMAL CURVE , 1926 .

[12]  Pierre L'Ecuyer,et al.  On the Convergence Rates of IPA and FDC Derivative Estimators , 1990, Oper. Res..

[13]  Pierre L'Ecuyer,et al.  Variance Reduction's Greatest Hits , 2007 .

[14]  C. Robert Simulation of truncated normal variables , 2009, 0907.4010.

[15]  Wayne Luk,et al.  Gaussian random number generators , 2007, CSUR.

[16]  John Geweke,et al.  Efficient Simulation from the Multivariate Normal and Student-t Distributions Subject to Linear Constraints and the Evaluation of Constraint Probabilities , 1991 .

[17]  Michel Mandjes,et al.  Tail distribution of the maximum of correlated Gaussian random variables , 2015, 2015 Winter Simulation Conference (WSC).

[18]  T. A. Bray,et al.  A Convenient Method for Generating Normal Variables , 1964 .

[19]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[20]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[21]  Chris Hans,et al.  Model uncertainty and variable selection in Bayesian lasso regression , 2010, Stat. Comput..

[23]  Z. Botev The normal law under linear restrictions: simulation and estimation via minimax tilting , 2016, 1603.04166.

[24]  Pierre L'Ecuyer,et al.  Simulation from the Normal Distribution Truncated to an Interval in the Tail , 2016, VALUETOOLS.