Estimation of SU(2) operation and dense coding: An information geometric approach

This paper addresses quantum statistical estimation of operators $U\ensuremath{\in}\mathrm{SU}(2)$ acting on $C{P}^{3}$ as $\ensuremath{\psi}\ensuremath{\mapsto}(U\ensuremath{\bigotimes}I)\ensuremath{\psi}$ where $\ensuremath{\psi}\ensuremath{\in}{C}^{2}\ensuremath{\bigotimes}{C}^{2}.$ This is regarded as a continuous analog of the dense coding. We first prove that the quantum Cram\'er-Rao lower bound takes the minimum, and is achievable, if and only if \ensuremath{\psi} is a maximally entangled state. We next show that an SU(2) orbit on $C{P}^{3}$ equipped with the standard Riemannian structure is isometric to $\mathrm{SU}(2)/{\ifmmode\pm\else\textpm\fi{}I}\ensuremath{\cong}\mathrm{SO}(3)$ if and only if \ensuremath{\psi} is a maximally entangled state. These results provide an alternative view for the optimality of the use of a maximally entangled state.

[1]  N. B. E. Sá Decomposition of Hilbert space in sets of coherent states , 2000, quant-ph/0009022.

[2]  John Preskill,et al.  Quantum information and precision measurement , 1999, quant-ph/9904021.

[3]  Keiji matsumoto A new approach to the Cramér-Rao-type bound of the pure-state model , 2002 .

[4]  Akio Fujiwara,et al.  Quantum channel identification problem , 2001 .

[5]  Hiroshi Nagaoka,et al.  Quantum Fisher metric and estimation for pure state models , 1995 .

[6]  R. Bhatia Matrix Analysis , 1996 .

[7]  Tomohiro Ogawa,et al.  Strong converse and Stein's lemma in quantum hypothesis testing , 2000, IEEE Trans. Inf. Theory.

[8]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[9]  Joseph A. Wolf Spaces of Constant Curvature , 1984 .

[10]  A geometrical study in quantum information systems , 1995 .

[11]  F. Hiai,et al.  The proper formula for relative entropy and its asymptotics in quantum probability , 1991 .

[12]  C. Helstrom Quantum detection and estimation theory , 1969 .

[13]  Zdeněk Hradil,et al.  Maximum-likelihood estimation of quantum processes , 2001, OFC 2001.

[14]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[15]  K. Nomizu,et al.  Foundations of Differential Geometry , 1963 .

[16]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[17]  V. Vedral,et al.  Mixed state dense coding and its relation to entanglement measures , 1998 .

[18]  Hiroshi Nagaoka,et al.  An estimation theoretical characterization of coherent states , 1999 .

[19]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[20]  K. Życzkowski,et al.  Geometry of entangled states , 2000, quant-ph/0006068.

[21]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[22]  Shun-ichi Amari,et al.  Methods of information geometry , 2000 .

[23]  Massimiliano F. Sacchi Maximum-likelihood reconstruction of completely positive maps , 2001 .