Strategies to associate memories by unsupervised learning in neural networks

In this work we study the effects of three different strategies to associate memories in a neural network composed by both excitatory and inhibitory spiking neurons, which are randomly connected through recurrent excitatory and inhibitory synapses. The system is intended to store a number of memories, associated to spatial external inputs. The strategies consist in the presentation of the input patterns through trials in: i) ordered sequence; ii) random sequence; iii) clustered sequences. In addition, an order parameter indicating the correlation between the trials' activities is introduced to compute associative memory capacities and the quality of memory retrieval.

[1]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.