Boosting Based Conditional Quantile Estimation for Regression and Binary Classification

We introduce Quantile Boost (QBoost) algorithms which predict conditional quantiles of the interested response for regression and binary classification. Quantile Boost Regression (QBR) performs gradient descent in functional space to minimize the objective function used by quantile regression (QReg). In the classification scenario, the class label is defined via a hidden variable, and the quantiles of the class label are estimated by fitting the corresponding quantiles of the hidden variable. An equivalent form of the definition of quantile is introduced, whose smoothed version is employed as the objective function, which is maximized by gradient ascent in functional space to get the Quantile Boost Classification (QBC) algorithm. Extensive experiments show that QBoost performs better than the original QReg and other alternatives for regression and classification. Furthermore, QBoost is more robust to noisy predictors.

[1]  Peter Bühlmann,et al.  Boosting for Tumor Classification with Gene Expression Data , 2003, Bioinform..

[2]  Marcel Dettling,et al.  BagBoosting for tumor classification with gene expression data , 2004, Bioinform..

[3]  P. Bühlmann,et al.  Boosting With the L2 Loss , 2003 .

[4]  R. Koenker Quantile Regression: Fundamentals of Quantile Regression , 2005 .

[5]  Thomas G. Dietterich,et al.  Solving Multiclass Learning Problems via Error-Correcting Output Codes , 1994, J. Artif. Intell. Res..

[6]  Yufeng Liu,et al.  VARIABLE SELECTION IN QUANTILE REGRESSION , 2009 .

[7]  John Langford,et al.  Predicting Conditional Quantiles via Reduction to Classification , 2006, UAI.

[8]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[9]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[10]  Y. Freund,et al.  Discussion of the Paper \additive Logistic Regression: a Statistical View of Boosting" By , 2000 .

[11]  Gregory Kordas Smoothed binary regression quantiles , 2006 .

[12]  Ji Zhu,et al.  L1-Norm Quantile Regression , 2008 .

[13]  David P. Helmbold,et al.  Boosting Methods for Regression , 2002, Machine Learning.

[14]  R. Koenker Quantile Regression: Name Index , 2005 .

[15]  Gregory Kordas Credit Scoring Using Binary Quantile Regression , 2002 .

[16]  D. Hunter,et al.  Quantile Regression via an MM Algorithm , 2000 .

[17]  P. Bühlmann,et al.  Boosting with the L2-loss: regression and classification , 2001 .

[18]  D. M. Titterington,et al.  Median-Based Classifiers for High-Dimensional Data , 2009 .

[19]  Toniann Pitassi,et al.  A Gradient-Based Boosting Algorithm for Regression Problems , 2000, NIPS.

[20]  Peter Buhlmann,et al.  BOOSTING ALGORITHMS: REGULARIZATION, PREDICTION AND MODEL FITTING , 2007, 0804.2752.

[21]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.