An experimental survey of a posteriori Courant finite element error control for the Poisson equation

This comparison of some a posteriori error estimators aims at empirical evidence for a ranking of their performance for a Poisson model problem with conforming lowest order finite element discretizations. Modified residual-based error estimates compete with averaging techniques and two estimators based on local problem solving. Multiplicative constants are involved to achieve guaranteed upper and lower energy error bounds up to higher order terms. The optimal strategy combines various estimators.

[1]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[2]  Ricardo H. Nochetto,et al.  Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..

[3]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[4]  J. Oden,et al.  A unified approach to a posteriori error estimation using element residual methods , 1993 .

[5]  J. Tinsley Oden,et al.  A Posteriori Error Estimation , 2002 .

[6]  Ricardo H. Nochetto,et al.  Local problems on stars: A posteriori error estimators, convergence, and performance , 2003, Math. Comput..

[7]  Rodolfo Rodríguez A Posteriori Error Analysis in the Finite Element Method , 1994 .

[8]  Carsten Carstensen,et al.  Averaging technique for FE – a posteriori error control in elasticity. Part II: λ-independent estimates , 2001 .

[9]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[10]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM , 2002, Math. Comput..

[11]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[12]  Ralf Kornhuber,et al.  A posteriori error estimates for elliptic problems in two and three space dimensions , 1996 .

[13]  Claes Johnson,et al.  Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.

[14]  Carsten Carstensen,et al.  Merging the Bramble-Pasciak-Steinbach and the Crouzeix-Thomée criterion for H1-stability of the L2-projection onto finite element spaces , 2002, Math. Comput..

[15]  Carsten Carstensen,et al.  Averaging techniques for reliable a posteriori FE-error control in elastoplasticity with hardening , 2003 .

[16]  H. Weinberger,et al.  An optimal Poincaré inequality for convex domains , 1960 .

[17]  Ricardo H. Nochetto,et al.  Removing the saturation assumption in a posteriori error analysis , 1993 .

[18]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[19]  Mark Ainsworth,et al.  A posteriori error estimators for second order elliptic systems part 2. An optimal order process for calculating self-equilibrating fluxes , 1993 .

[20]  Carsten Carstensen,et al.  Averaging technique for FE – a posteriori error control in elasticity. Part I: Conforming FEM , 2001 .

[21]  Carsten Carstensen,et al.  Fully Reliable Localized Error Control in the FEM , 1999, SIAM J. Sci. Comput..

[22]  Rolf Rannacher,et al.  A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .

[23]  Ricardo H. Nochetto,et al.  Small data oscillation implies the saturation assumption , 2002, Numerische Mathematik.

[24]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[25]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[26]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[27]  J. Tinsley Oden,et al.  A posteriori error estimators for second order elliptic systems: Part 1. Theoretical foundations and a posteriori error analysis , 1993 .

[28]  Pierre Ladevèze,et al.  Error Estimate Procedure in the Finite Element Method and Applications , 1983 .

[29]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[30]  R. Verfürth,et al.  Edge Residuals Dominate A Posteriori Error Estimates for Low Order Finite Element Methods , 1999 .

[31]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[32]  Carsten Carstensen,et al.  A posteriori error control in low-order finite element discretisations of incompressible stationary flow problems , 2001, Math. Comput..

[33]  C. Carstensen QUASI-INTERPOLATION AND A POSTERIORI ERROR ANALYSIS IN FINITE ELEMENT METHODS , 1999 .

[34]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..

[35]  I. Babuska,et al.  A feedback element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator , 1987 .

[36]  Ivo Babuška,et al.  Guaranteed computable bounds for the exact error in the finite element solution—Part II: bounds for the energy norm of the error in two dimensions† , 2000 .

[37]  C. Carstensen,et al.  Constants in Clément-interpolation error and residual based a posteriori estimates in finite element methods , 2000 .

[38]  Carsten Carstensen,et al.  Averaging technique for a posteriori error control in elasticity. Part III: Locking-free nonconforming FEM , 2001 .

[39]  R. Rodríguez Some remarks on Zienkiewicz‐Zhu estimator , 1994 .