A two-phase analysis of the use of water-aluminum nanofluid in a solar still with a layer of phase change materials

[1]  M. Amjad,et al.  Performance analysis of nanofluid-based water desalination system using integrated solar still, flat plate and parabolic trough collectors , 2022, Journal of the Brazilian Society of Mechanical Sciences and Engineering.

[2]  D. Toghraie,et al.  Numerical study of the effect of solar radiation intensity on the performance of desalination still with Thermoelectric Cooling System (TEC) for hot and dry areas of Semnan , 2022, Case Studies in Thermal Engineering.

[3]  Tingting Ding,et al.  Photovoltaic power forecast based on satellite images considering effects of solar position , 2021 .

[4]  M. Afrand,et al.  Nanofluids: Physical phenomena, applications in thermal systems and the environment effects- a critical review , 2021 .

[5]  B. Sundén,et al.  A comprehensive review on the application of hybrid nanofluids in solar energy collectors , 2021 .

[6]  A. Pisello,et al.  Empirical data-driven multi-layer perceptron and radial basis function techniques in predicting the performance of nanofluid-based modified tubular solar collectors , 2021, Journal of Cleaner Production.

[7]  E. Bellos,et al.  Recent advances on nanofluids for low to medium temperature solar collectors: energy, exergy, economic analysis and environmental impact , 2021 .

[8]  H. Ali,et al.  MXene based advanced materials for thermal energy storage: A recent review , 2021 .

[9]  K. Sadasivuni,et al.  Experimental investigation on the yield of solar still using manganese oxide nanoparticles coated absorber , 2021 .

[10]  K. Sadasivuni,et al.  Performance enhancement using TiO2 nano particles in solar still at variable water depth , 2021 .

[11]  Ming Yang,et al.  Confidence Interval Based Distributionally Robust Real-Time Economic Dispatch Approach Considering Wind Power Accommodation Risk , 2021, IEEE Transactions on Sustainable Energy.

[12]  Mostafa Safdari Shadloo,et al.  Applications of nanofluids containing carbon nanotubes in solar energy systems: A review , 2020 .

[13]  M. Afrand,et al.  Natural convective heat transfer and entropy generation of alumina/water nanofluid in a tilted enclosure with an elliptic constant temperature: Applying magnetic field and radiation effects , 2020 .

[14]  M. Ali,et al.  Eco-friendly coffee-based colloid for performance augmentation of solar stills , 2020 .

[15]  K. Sadasivuni,et al.  Use of solar photovoltaic with active solar still to improve distillate output: A review , 2020 .

[16]  H. Ali Recent advancements in PV cooling and efficiency enhancement integrating phase change materials based systems – A comprehensive review , 2020 .

[17]  Ali J. Chamkha,et al.  Entropy generation analysis due to MHD natural convection flow in a cavity occupied with hybrid nanofluid and equipped with a conducting hollow cylinder , 2020, Journal of Thermal Analysis and Calorimetry.

[18]  Mohamed Si–Ameur,et al.  Enhanced heat and mass transfer in solar stills using nanofluids: A review , 2018, Solar Energy.

[19]  D. Wen,et al.  Solar evaporation via nanofluids: A comparative study , 2018, Renewable Energy.

[20]  Saman Rashidi,et al.  Volume of fluid model to simulate the nanofluid flow and entropy generation in a single slope solar still , 2018 .

[21]  Xiaoze Du,et al.  Volumetric solar heating and steam generation via gold nanofluids , 2017 .

[22]  Lovedeep Sahota,et al.  Exergoeconomic and enviroeconomic analyses of hybrid double slope solar still loaded with nanofluids , 2017 .

[23]  D. Wen,et al.  Steam generation in a nanoparticle-based solar receiver , 2016 .

[24]  Lovedeep Sahota,et al.  Effect of nanofluids on the performance of passive double slope solar still: a comparative study using characteristic curve. , 2016 .

[25]  Xiaodong Wang,et al.  Fabrication of multifunctional microcapsules containing n-eicosane core and zinc oxide shell for low-temperature energy storage, photocatalysis, and antibiosis , 2015 .

[26]  A. E. Kabeel,et al.  Effect of using nanofluids and providing vacuum on the yield of corrugated wick solar still. , 2015 .

[27]  Amimul Ahsan,et al.  Parameters affecting the performance of a low cost solar still , 2014 .

[28]  G. N. Tiwari,et al.  Design, fabrication and performance evaluation of a hybrid photovoltaic thermal (PVT) double slope active solar still , 2011 .

[29]  Thirumalachari Sundararajan,et al.  An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids , 2010 .

[30]  Romdhane Ben Slama,et al.  Hybrid solar still by heat pump compression , 2010 .

[31]  Fawzi Banat,et al.  Solar thermal desalination technologies , 2008 .

[32]  H. Aybar,et al.  Mathematical modeling of an inclined solar water distillation system , 2006 .

[33]  Mousa K. Abu-Arabi,et al.  Modeling and performance analysis of a solar desalination unit with double-glass cover cooling , 2001 .

[34]  H. Ben Bacha,et al.  Modelling and simulation of a water desalination station with solar multiple condensation evaporation cycle technique , 1999 .

[35]  V. Voller,et al.  A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems , 1987 .

[36]  H. Brinkman The Viscosity of Concentrated Suspensions and Solutions , 1952 .

[37]  M. Afrand,et al.  Entropy generation and exergy analysis of Ag–MgO/water hybrid nanofluid within a circular heatsink with different number of outputs , 2022, International Journal of Thermal Sciences.