Optimizing simultaneously over the numerator and denominator polynomials in the Youla-Kucera parametrization

Traditionally, when approaching controller design with the Youla-Kuc/spl caron/era parametrization of all stabilizing controllers, the denominator of the rational parameter is fixed to a given stable polynomial, and optimization is carried out over the numerator polynomial. In this note, we revisit this design technique, allowing to optimize simultaneously over the numerator and denominator polynomials. Stability of the denominator polynomial, as well as fixed-order controller design with H/sub /spl infin// performance are ensured via the notion of a central polynomial and linear matrix inequality (LMI) conditions for polynomial positivity.

[1]  Stephen Boyd,et al.  A new CAD method and associated architectures for linear controllers , 1988 .

[2]  Karl Johan Åström,et al.  Fundamental Limitations of Control System Performance , 1996 .

[3]  Michael Sebek,et al.  Positive polynomials and robust stabilization with fixed-order controllers , 2003, IEEE Trans. Autom. Control..

[4]  Huibert Kwakernaak,et al.  Robust control and H∞-optimization - Tutorial paper , 1993, Autom..

[5]  Ioan Doré Landau,et al.  Combined pole placement/sensitivity function shaping method using convex optimization criteria , 1997, 1997 European Control Conference (ECC).

[6]  Vladimír Kučera,et al.  Diophantine equations in control - A survey , 1993, Autom..

[7]  Joe H. Chow,et al.  Low-order controller design for SISO systems using coprime factors and LMI , 2000, IEEE Trans. Autom. Control..

[8]  Karl J. Åström,et al.  Limitations on control system performance , 1997, 1997 European Control Conference (ECC).

[9]  Alexandre Megretski,et al.  A convex parameterization of robustly stabilizing controllers , 1994, IEEE Trans. Autom. Control..

[10]  Stephen P. Boyd,et al.  Linear controller design: limits of performance , 1991 .

[11]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[12]  Michael Sebek,et al.  The polynomial toolbox for matlab , 1997 .

[13]  Dante C. Youla,et al.  Modern Wiener-Hopf Design of Optimal Controllers. Part I , 1976 .

[14]  Jr. G. Forney,et al.  Minimal Bases of Rational Vector Spaces, with Applications to Multivariable Linear Systems , 1975 .

[15]  V. Kučera Stability of Discrete Linear Feedback Systems , 1975 .