Optimizing simultaneously over the numerator and denominator polynomials in the Youla-Kucera parametrization
暂无分享,去创建一个
[1] Stephen Boyd,et al. A new CAD method and associated architectures for linear controllers , 1988 .
[2] Karl Johan Åström,et al. Fundamental Limitations of Control System Performance , 1996 .
[3] Michael Sebek,et al. Positive polynomials and robust stabilization with fixed-order controllers , 2003, IEEE Trans. Autom. Control..
[4] Huibert Kwakernaak,et al. Robust control and H∞-optimization - Tutorial paper , 1993, Autom..
[5] Ioan Doré Landau,et al. Combined pole placement/sensitivity function shaping method using convex optimization criteria , 1997, 1997 European Control Conference (ECC).
[6] Vladimír Kučera,et al. Diophantine equations in control - A survey , 1993, Autom..
[7] Joe H. Chow,et al. Low-order controller design for SISO systems using coprime factors and LMI , 2000, IEEE Trans. Autom. Control..
[8] Karl J. Åström,et al. Limitations on control system performance , 1997, 1997 European Control Conference (ECC).
[9] Alexandre Megretski,et al. A convex parameterization of robustly stabilizing controllers , 1994, IEEE Trans. Autom. Control..
[10] Stephen P. Boyd,et al. Linear controller design: limits of performance , 1991 .
[11] Jos F. Sturm,et al. A Matlab toolbox for optimization over symmetric cones , 1999 .
[12] Michael Sebek,et al. The polynomial toolbox for matlab , 1997 .
[13] Dante C. Youla,et al. Modern Wiener-Hopf Design of Optimal Controllers. Part I , 1976 .
[14] Jr. G. Forney,et al. Minimal Bases of Rational Vector Spaces, with Applications to Multivariable Linear Systems , 1975 .
[15] V. Kučera. Stability of Discrete Linear Feedback Systems , 1975 .