Stress-activated protein kinase-3 interacts with the PDZ domain of alpha1-syntrophin. A mechanism for specific substrate recognition.

Mechanisms for selective targeting to unique subcellular sites play an important role in determining the substrate specificities of protein kinases. Here we show that stress-activated protein kinase-3 (SAPK3, also called ERK6 and p38gamma), a member of the mitogen-activated protein kinase family that is abundantly expressed in skeletal muscle, binds through its carboxyl-terminal sequence -KETXL to the PDZ domain of alpha1-syntrophin. SAPK3 phosphorylates alpha1-syntrophin at serine residues 193 and 201 in vitro and phosphorylation is dependent on binding to the PDZ domain of alpha1-syntrophin. In skeletal muscle SAPK3 and alpha1-syntrophin co-localize at the neuromuscular junction, and both proteins can be co-immunoprecipitated from transfected COS cell lysates. Phosphorylation of a PDZ domain-containing protein by an associated protein kinase is a novel mechanism for determining both the localization and the substrate specificity of a protein kinase.

[1]  T. Südhof,et al.  A Tripartite Protein Complex with the Potential to Couple Synaptic Vesicle Exocytosis to Cell Adhesion in Brain , 1998, Cell.

[2]  Stuart K. Kim,et al.  The LIN-2/LIN-7/LIN-10 Complex Mediates Basolateral Membrane Localization of the C. elegans EGF Receptor LET-23 in Vulval Epithelial Cells , 1998, Cell.

[3]  T. Kohno,et al.  Identification of stathmin as a novel substrate for p38 delta. , 1998, Biochemical and biophysical research communications.

[4]  D. Alessi,et al.  Mitogen‐ and stress‐activated protein kinase‐1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB , 1998, The EMBO journal.

[5]  S. Snyder,et al.  Neurabin is a synaptic protein linking p70 S6 kinase and the neuronal cytoskeleton. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Elizabeth J. Goldsmith,et al.  Acquisition of Sensitivity of Stress-activated Protein Kinases to the p38 Inhibitor, SB 203580, by Alteration of One or More Amino Acids within the ATP Binding Pocket* , 1998, The Journal of Biological Chemistry.

[7]  Yong Jiang,et al.  PRAK, a novel protein kinase regulated by the p38 MAP kinase , 1998, The EMBO journal.

[8]  P. Cohen,et al.  Conversion of SB 203580-insensitive MAP kinase family members to drug-sensitive forms by a single amino-acid substitution. , 1998, Chemistry & biology.

[9]  J. Caldwell,et al.  Interaction of Muscle and Brain Sodium Channels with Multiple Members of the Syntrophin Family of Dystrophin-Associated Proteins , 1998, The Journal of Neuroscience.

[10]  Jens Schneider-Mergener,et al.  Journal speciation , 1998, Nature Structural Biology.

[11]  E. Olson,et al.  Specific Interaction of the PDZ Domain Protein PICK1 with the COOH Terminus of Protein Kinase C-α* , 1997, The Journal of Biological Chemistry.

[12]  Yong Jiang,et al.  Characterization of the Structure and Function of the Fourth Member of p38 Group Mitogen-activated Protein Kinases, p38δ* , 1997, The Journal of Biological Chemistry.

[13]  C. Manthey,et al.  Molecular Cloning and Characterization of a Novel p38 Mitogen-activated Protein Kinase* , 1997, The Journal of Biological Chemistry.

[14]  P. Cohen,et al.  The search for physiological substrates of MAP and SAP kinases in mammalian cells. , 1997, Trends in cell biology.

[15]  M. F. Peters,et al.  Differential Association of Syntrophin Pairs with the Dystrophin Complex , 1997, The Journal of cell biology.

[16]  J C Lee,et al.  Novel homologues of CSBP/p38 MAP kinase: activation, substrate specificity and sensitivity to inhibition by pyridinyl imidazoles. , 1997, Biochemical and biophysical research communications.

[17]  Philip R. Cohen,et al.  Activation of the novel stress‐activated protein kinase SAPK4 by cytokines and cellular stresses is mediated by SKK3 (MKK6); comparison of its substrate specificity with that of other SAP kinases , 1997, The EMBO journal.

[18]  Jonathan A. Cooper,et al.  Mitogen‐activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2 , 1997, The EMBO journal.

[19]  Tony Hunter,et al.  MNK1, a new MAP kinase‐activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates , 1997, The EMBO journal.

[20]  Philip R. Cohen,et al.  Activation of stress‐activated protein kinase‐3 (SAPK3) by cytokines and cellular stresses is mediated via SAPKK3 (MKK6); comparison of the specificities of SAPK3 and SAPK2 (RK/p38) , 1997, The EMBO journal.

[21]  Jiahuai Han,et al.  The primary structure of p38 gamma: a new member of p38 group of MAP kinases. , 1996, Biochemical and biophysical research communications.

[22]  M. Sheng,et al.  PDZs and Receptor/Channel Clustering: Rounding Up the Latest Suspects , 1996, Neuron.

[23]  Philip R. Cohen,et al.  A comparison of the substrate specificity of MAPKAP kinase‐2 and MAPKAP kinase‐3 and their activation by cytokines and cellular stress , 1996, FEBS letters.

[24]  H. K. Sluss,et al.  Selective interaction of JNK protein kinase isoforms with transcription factors. , 1996, The EMBO journal.

[25]  A. Ullrich,et al.  ERK6, a mitogen-activated protein kinase involved in C2C12 myoblast differentiation. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Stuart K. Kim,et al.  LET-23 Receptor Localization by the Cell Junction Protein LIN-7 during C. elegans Vulval Induction , 1996, Cell.

[27]  M. Goedert,et al.  SAP kinase‐3, a new member of the family of mammalian stress‐activated protein kinases , 1996, FEBS letters.

[28]  D. Bredt,et al.  Interaction of Nitric Oxide Synthase with the Postsynaptic Density Protein PSD-95 and α1-Syntrophin Mediated by PDZ Domains , 1996, Cell.

[29]  S. K. Kim,et al.  The C. elegans vulval induction gene lin-2 encodes a member of the MAGUK family of cell junction proteins. , 1996, Development.

[30]  Y. Jan,et al.  Clustering of Shaker-type K+ channels by interaction with a family of membrane-associated guanylate kinases , 1995, Nature.

[31]  R. White,et al.  Mouse α1- and β2-Syntrophin Gene Structure, Chromosome Localization, and Homology with a Discs Large Domain (*) , 1995, The Journal of Biological Chemistry.

[32]  P. Seeburg,et al.  Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. , 1995, Science.

[33]  Philip R. Cohen,et al.  SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin‐1 , 1995, FEBS letters.

[34]  Jerry L. Adams,et al.  A protein kinase involved in the regulation of inflammatory cytokine biosynthesis , 1994, Nature.

[35]  D. Branton,et al.  Cloning and characterization of hdlg: the human homologue of the Drosophila discs large tumor suppressor binds to protein 4.1. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Michel Morange,et al.  A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins , 1994, Cell.

[37]  M. F. Peters,et al.  beta 2-Syntrophin: localization at the neuromuscular junction in skeletal muscle. , 1994, Neuroreport.

[38]  L Bibbs,et al.  A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. , 1994, Science.

[39]  J. Woodgett,et al.  The stress-activated protein kinase subfamily of c-Jun kinases , 1994, Nature.

[40]  L. Kunkel,et al.  Cloning of human basic A1, a distinct 59-kDa dystrophin-associated protein encoded on chromosome 8q23-24. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[41]  M. Karin,et al.  JNK1: A protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain , 1994, Cell.

[42]  M. Karin,et al.  Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. , 1993, Genes & development.

[43]  M. F. Peters,et al.  Two forms of mouse syntrophin, a 58 kd dystrophin-associated protein, differ in primary structure and tissue distribution , 1993, Neuron.

[44]  P. Cohen,et al.  MAPKAP kinase‐2; a novel protein kinase activated by mitogen‐activated protein kinase. , 1992, The EMBO journal.

[45]  J. Massagué,et al.  Novel activin receptors: Distinct genes and alternative mRNA splicing generate a repertoire of serine/threonine kinase receptors , 1992, Cell.

[46]  David Jones Electrons on tap , 1991, Nature.

[47]  L. Mathews,et al.  Expression cloning of an activin receptor, a predicted transmembrane serine kinase , 1991, Cell.

[48]  Paul W. Sternberg,et al.  The let-23 gene necessary for Caenorhabditis elegans vulval induction encodes a tyrosine kinase of the EGF receptor subfamily , 1990, Nature.

[49]  R. Rogart,et al.  Molecular cloning of a putative tetrodotoxin-resistant rat heart Na+ channel isoform. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[50]  S. Fields,et al.  A novel genetic system to detect protein–protein interactions , 1989, Nature.

[51]  J. Trimmer,et al.  Primary structure and functional expression of a mammalian skeletal muscle sodium channel , 1989, Neuron.

[52]  H. Peng,et al.  A postsynaptic Mr 58,000 (58K) protein concentrated at acetylcholine receptor-rich sites in Torpedo electroplaques and skeletal muscle , 1987, The Journal of cell biology.