Flipping Edges in Triangulations

In this paper we study the problem of flipping edges in triangulations of polygons and point sets. One of the main results is that any triangulation of a set of n points in general position contains at least \(\lceil (n-4)/2 \rceil\) edges that can be flipped. We also prove that O(n + k2) flips are sufficient to transform any triangulation of an n -gon with k reflex vertices into any other triangulation. We produce examples of n -gons with triangulations T and T' such that to transform T into T' requires Ω(n2) flips. Finally we show that if a set of n points has k convex layers, then any triangulation of the point set can be transformed into any other triangulation using at most O(kn) flips.

[1]  M. Shephard,et al.  Geometry-based fully automatic mesh generation and the delaunay triangulation , 1988 .

[2]  Tiow Seng Tan,et al.  An O(n2 log n) Time Algorithm for the Minmax Angle Triangulation , 1992, SIAM J. Sci. Comput..

[3]  Larry L. Schumaker,et al.  Triangulations in CAGD , 1993, IEEE Computer Graphics and Applications.

[4]  Marc Noy,et al.  The graph of triangulations of a convex polygon , 1996, SCG '96.

[5]  Carl W. Lee,et al.  Regular Triangulations of Convex Polvtopes , 1990, Applied Geometry And Discrete Mathematics.

[6]  Alan Saalfeld Joint triangulations and triangulation maps , 1987, SCG '87.

[7]  Larry L. Schumaker,et al.  Cubic spline fitting using data dependent triangulations , 1990, Comput. Aided Geom. Des..

[8]  D. Eppstein,et al.  MESH GENERATION AND OPTIMAL TRIANGULATION , 1992 .

[9]  Frank Ruskey,et al.  On Rotations and the Generation of Binary Trees , 1993, J. Algorithms.

[10]  Thomas Ottmann,et al.  The Edge-flipping Distance of Triangulations , 1996, J. Univers. Comput. Sci..

[11]  Ronald D. Dutton,et al.  Finding paths in the rotation graph of binary trees , 1996 .

[12]  Michel Pocchiola,et al.  Topologically sweeping visibility complexes via pseudotriangulations , 1996, Discret. Comput. Geom..

[13]  C. Lawson Software for C1 Surface Interpolation , 1977 .

[14]  L. Nackman,et al.  Automatic mesh generation using the symmetric axis transformation of polygonal domains , 1992, Proc. IEEE.

[15]  K. Ho-Le,et al.  Finite element mesh generation methods: a review and classification , 1988 .

[16]  Marc Noy,et al.  Triangulations, Visibility Graph and Reflex Vertices of a Simple Polygon , 1996, Comput. Geom..

[17]  D. F. Watson,et al.  Systematic triangulations , 1983, Comput. Vis. Graph. Image Process..

[18]  Micha Sharir,et al.  Piecewise-linear interpolation between polygonal slices , 1994, SCG '94.

[19]  Joan M. Lucas The Rotation Graph of Binary Trees is Hamiltonian , 1987, J. Algorithms.

[20]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[21]  Tianjun Wang,et al.  A C2-quintic spline interpolation scheme on triangulation , 1992, Comput. Aided Geom. Des..

[22]  Carl W. Lee,et al.  The Associahedron and Triangulations of the n-gon , 1989, Eur. J. Comb..

[23]  William H. Frey,et al.  Mesh relaxation: A new technique for improving triangulations , 1991 .

[24]  C. Board,et al.  Display and analysis of spatial data , 1975 .

[25]  Godfried T. Toussaint,et al.  NEW RESULTS IN COMPUTATIONAL GEOMETRY RELEVANT TO PATTERN RECOGNITION IN PRACTICE , 1986 .

[26]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[27]  Robert E. Tarjan,et al.  Rotation distance, triangulations, and hyperbolic geometry , 1986, STOC '86.

[28]  Ari Rappoport,et al.  Shape blending using the star-skeleton representation , 1995, IEEE Computer Graphics and Applications.

[29]  R. Tarjan,et al.  Rotation distance, triangulations, and hyperbolic geometry , 1986, STOC '86.

[30]  Dianne Hansford The neutral case for the min-max triangulation , 1990, Comput. Aided Geom. Des..

[31]  Steven Skiena,et al.  Hamilton Triangulations for Fast Rendering , 1994, ESA.