Forward stable eigenvalue decomposition of rank-one modifications of diagonal matrices

Abstract We present a new algorithm for solving an eigenvalue problem for a real symmetric matrix which is a rank-one modification of a diagonal matrix. The algorithm computes each eigenvalue and all components of the corresponding eigenvector with high relative accuracy in O ( n ) operations. The algorithm is based on a shift-and-invert approach. Only a single element of the inverse of the shifted matrix eventually needs to be computed with double the working precision. Each eigenvalue and the corresponding eigenvector can be computed separately, which makes the algorithm adaptable for parallel computing. Our results extend to the complex Hermitian case. The algorithm is similar to the algorithm for solving the eigenvalue problem for real symmetric arrowhead matrices from N. Jakovcevic Stor et al. (2015) [16] .

[1]  J. Cuppen A divide and conquer method for the symmetric tridiagonal eigenproblem , 1980 .

[2]  S. Eisenstat,et al.  A Stable and Efficient Algorithm for the Rank-One Modification of the Symmetric Eigenproblem , 1994, SIAM J. Matrix Anal. Appl..

[3]  Carlos F. Borges,et al.  A Parallel Divide and Conquer Algorithm for the Generalized Real Symmetric Definite Tridiagonal Eigenproblem , 1993 .

[4]  Ren-Cang Li Solving secular equations stably and efficiently , 1993 .

[5]  P. Rózsa,et al.  On eigenvectors and adjoints of modified matrices , 1981 .

[6]  Marc Van Barel,et al.  Structures preserved by matrix inversion , 2006, SIAM J. Matrix Anal. Appl..

[7]  Achi Brandt,et al.  N Roots of the Secular Equation in O(N) Operations , 2002, SIAM J. Matrix Anal. Appl..

[8]  Jack J. Dongarra,et al.  A fully parallel algorithm for the symmetric eigenvalue problem , 1985, PPSC.

[9]  Stanley C. Eisenstat,et al.  A Divide-and-Conquer Algorithm for the Symmetric Tridiagonal Eigenproblem , 1995, SIAM J. Matrix Anal. Appl..

[10]  Gene H. Golub,et al.  Matrix computations , 1983 .

[11]  Mei Han An,et al.  accuracy and stability of numerical algorithms , 1991 .

[12]  Jesse L. Barlow,et al.  Accurate eigenvalue decomposition of real symmetric arrowhead matrices and applications , 2013, 1302.7203.

[13]  G. Stewart,et al.  Computing the eigenvalues and eigenvectors of symmetric arrowhead matrices , 1990 .

[14]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[15]  Stanley C. Eisenstat,et al.  A Divide-and-Conquer Algorithm for the Bidiagonal SVD , 1995, SIAM J. Matrix Anal. Appl..

[16]  J. Barlow Error analysis of update methods for the symmetric eigenvalue problem , 1993 .

[17]  D. Bernstein Matrix Mathematics: Theory, Facts, and Formulas , 2009 .

[18]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[19]  T. J. Dekker,et al.  A floating-point technique for extending the available precision , 1971 .

[20]  James Demmel,et al.  LAPACK Users' Guide, Third Edition , 1999, Software, Environments and Tools.

[21]  A. Melman Numerical solution of a secular equation , 1995 .

[22]  J. Bunch,et al.  Rank-one modification of the symmetric eigenproblem , 1978 .

[23]  R. Vandebril,et al.  Matrix Computations and Semiseparable Matrices , 2007 .