Forward stable eigenvalue decomposition of rank-one modifications of diagonal matrices
暂无分享,去创建一个
Jesse L. Barlow | Ivan Slapnicar | Nevena Jakovcevic Stor | Ivan Slapničar | J. Barlow | N. J. Stor | I. Slapničar
[1] J. Cuppen. A divide and conquer method for the symmetric tridiagonal eigenproblem , 1980 .
[2] S. Eisenstat,et al. A Stable and Efficient Algorithm for the Rank-One Modification of the Symmetric Eigenproblem , 1994, SIAM J. Matrix Anal. Appl..
[3] Carlos F. Borges,et al. A Parallel Divide and Conquer Algorithm for the Generalized Real Symmetric Definite Tridiagonal Eigenproblem , 1993 .
[4] Ren-Cang Li. Solving secular equations stably and efficiently , 1993 .
[5] P. Rózsa,et al. On eigenvectors and adjoints of modified matrices , 1981 .
[6] Marc Van Barel,et al. Structures preserved by matrix inversion , 2006, SIAM J. Matrix Anal. Appl..
[7] Achi Brandt,et al. N Roots of the Secular Equation in O(N) Operations , 2002, SIAM J. Matrix Anal. Appl..
[8] Jack J. Dongarra,et al. A fully parallel algorithm for the symmetric eigenvalue problem , 1985, PPSC.
[9] Stanley C. Eisenstat,et al. A Divide-and-Conquer Algorithm for the Symmetric Tridiagonal Eigenproblem , 1995, SIAM J. Matrix Anal. Appl..
[10] Gene H. Golub,et al. Matrix computations , 1983 .
[11] Mei Han An,et al. accuracy and stability of numerical algorithms , 1991 .
[12] Jesse L. Barlow,et al. Accurate eigenvalue decomposition of real symmetric arrowhead matrices and applications , 2013, 1302.7203.
[13] G. Stewart,et al. Computing the eigenvalues and eigenvectors of symmetric arrowhead matrices , 1990 .
[14] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[15] Stanley C. Eisenstat,et al. A Divide-and-Conquer Algorithm for the Bidiagonal SVD , 1995, SIAM J. Matrix Anal. Appl..
[16] J. Barlow. Error analysis of update methods for the symmetric eigenvalue problem , 1993 .
[17] D. Bernstein. Matrix Mathematics: Theory, Facts, and Formulas , 2009 .
[18] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[19] T. J. Dekker,et al. A floating-point technique for extending the available precision , 1971 .
[20] James Demmel,et al. LAPACK Users' Guide, Third Edition , 1999, Software, Environments and Tools.
[21] A. Melman. Numerical solution of a secular equation , 1995 .
[22] J. Bunch,et al. Rank-one modification of the symmetric eigenproblem , 1978 .
[23] R. Vandebril,et al. Matrix Computations and Semiseparable Matrices , 2007 .