GIS multi-criteria decision analysis for assessment and mapping of neotectonic landscape deformation: a case study from Crete

This study of drainage systems in a tectonically active region is based on the Geographical Information Systems (GIS) integration of data from an analytic hierarchy process (AHP) and a weighted linear combination (WLC) procedure with multiple criteria data. A set of thematic maps were produced, based on existing geological maps and freely-available ASTER Global DEM elevation data, using various geological information (i.e. lineaments and lithologies), geomorphometric indices (i.e. slope gradient, drainage density, stream frequency, and the topographic wetness index) and morphotectonic indices (i.e. amplitude of relief and stream length gradient) that highlight areas of neotectonic landscape deformation. The weights of the factors were determined using AHP and WLC. A neotectonic landscape deformation index (NLDI) is computed as the sum of the various weighted factors to provide a map of NLDI distribution across the study region (western Crete). The main objective of this study was to analyse and map the intra-basin spatial variations in neotectonic landscape deformation: five classes, very low to very high, were determined. High to very high deformation zones are linked with known and newly detected active fault zones. The methodology could be developed into a low-cost technique for assessing seismic hazard, guiding disaster risk reduction activities. It can provide an alternative to the Interferometric Synthetic Aperture Radar (InSAR) approach for highlighting zones of neotectonic deformation, particularly in regions where dense vegetation or snow cover renders InSAR ineffective.

[1]  Andreas Persson,et al.  Comparison of DEM Data Capture and Topographic Wetness Indices , 2003, Precision Agriculture.

[2]  E. Hoek,et al.  Gsi: A Geologically Friendly Tool For Rock Mass Strength Estimation , 2000 .

[3]  Piotr Migoń,et al.  How high - resolution DEM based on airborne LiDAR helped to reinterpret landforms : examples from the Sudetes, SW Poland , 2013 .

[4]  Sameer Saran,et al.  Multicriteria Spatial Decision Analysis in Web GIS Environment , 2007, GeoInformatica.

[5]  A. C. Dinesh,et al.  Linfo – a visual basic program for lineament density, frequency and intersection density analysis , 2013, Earth Science Informatics.

[6]  Chris J. Bromley,et al.  Subsidence in the geothermal fields of the Taupo Volcanic Zone, New Zealand from 1996 to 2005 measured by InSAR , 2007 .

[7]  S. Stiros The AD 365 Crete earthquake and possible seismic clustering during the fourth to sixth centuries AD in the Eastern Mediterranean: a review of historical and archaeological data , 2001 .

[8]  Bishal K. Sitaula,et al.  Land‐use change in two Nepalese watersheds: GIS and geomorphometric analysis , 2002 .

[9]  LAND USE SUITABILITY ANALYSIS: AN ASSESSMENT FOR THE RHODE ISLAND CENTRAL LANDFILL , 1998 .

[10]  I. Koukouvelas,et al.  Tectonic geomorphology of the easternmost extension of the Gulf of Corinth (Beotia, Central Greece) , 2008 .

[11]  D. Kelletat Perspectives in Coastal Geomorphology of Western Crete, Greece , 1996 .

[12]  Y. Chen,et al.  Along-strike variations of morphotectonic features in the Western Foothills of Taiwan: tectonic implications based on stream-gradient and hypsometric analysis , 2002 .

[13]  D. E. Ajakaiye,et al.  Evidence of tectonic control of mineralization in Nigeria from lineament density analysis A Landsat-study , 1987 .

[14]  J. Martel,et al.  Enhancing Geographical Information Systems Capabilities with Multi-Criteria Evaluation Functions , 2003 .

[15]  T. L. Saaty A Scaling Method for Priorities in Hierarchical Structures , 1977 .

[16]  M. Piggott,et al.  Eastern Mediterranean tectonics and tsunami hazard inferred from the AD 365 earthquake , 2008 .

[17]  J. Chorowicz,et al.  Neotectonics in the eastern North Anatolian fault region (Turkey) advocates crustal extension: mapping from SAR ERS imagery and Digital Elevation Model , 1999 .

[18]  Jean-Marc Martel,et al.  A spatial decision aid: A multicriterion evaluation approach , 1996 .

[19]  Mehdi Zare,et al.  Active tectonic assessment around Rudbar Lorestan dam site, High Zagros Belt (SW of Iran) , 2011 .

[20]  Jacek Malczewski,et al.  GIS and Multicriteria Decision Analysis , 1999 .

[21]  J. Azañón,et al.  Active tectonics in the central and eastern Betic Cordillera through morphotectonic analysis: the case of Sierra Nevada and Sierra Alhamilla , 2012 .

[22]  T. Bardají,et al.  Fault-generated mountain fronts in southeast Spain: geomorphologic assessment of tectonic and seismic activity , 2003 .

[23]  J. Angelier,et al.  Quaternary transfer faulting in the Taiwan Foothills: evidence from a multisource approach , 1997 .

[24]  B. Papazachos,et al.  Deep structure and tectonics of the Eastern Mediterranean , 1978 .

[25]  I. Fountoulis,et al.  Paleoseismological investigations along the Kera fault zone, Western Crete: implications for seismic hazard assessment , 2001 .

[26]  Yun Chen,et al.  To retire or expand? A fuzzy GIS‐based spatial multi‐criteria evaluation framework for irrigated agriculture , 2009 .

[27]  P. Rietveld,et al.  Multicriteria analysis and geographical information systems: an application to agricultural land use in the netherlands , 1990 .

[28]  I. Evans Statistical Characterization of Altitude Matrices by Computer. Report 6. An Integrated System of Terrain Analysis and Slope Mapping. , 1979 .

[29]  W. Bull,et al.  Tectonic Geomorphology North and South of the Garlock Fault, California , 1977 .

[30]  Edward A. Keller,et al.  Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain) , 2008 .

[31]  M. Summerfield Geomophology and Global Tectonics , 2000 .

[32]  P. Kneale,et al.  The influence of low-angled topography on hillslope soil-water convergence and stream discharge , 1982 .

[33]  Claus Rinner,et al.  Web-enabled spatial decision analysis using Ordered Weighted Averaging (OWA) , 2002, J. Geogr. Syst..

[34]  Jacek Malczewski,et al.  On the Use of Weighted Linear Combination Method in GIS: Common and Best Practice Approaches , 2000, Trans. GIS.

[35]  Claus Rinner,et al.  Exploring multicriteria decision strategies in GIS with linguistic quantifiers: A case study of residential quality evaluation , 2005, J. Geogr. Syst..

[36]  David O'Sullivan,et al.  Geographic Information Analysis , 2002 .

[37]  Angel Carlos López-Garrido,et al.  Geomorphologic evidence of the active Baza Fault (Betic Cordillera, South Spain) , 2008 .

[38]  Jacek Malczewski,et al.  GIS‐based multicriteria decision analysis: a survey of the literature , 2006, Int. J. Geogr. Inf. Sci..

[39]  D. McKenzie,et al.  Some remarks on the development of sedimentary basins , 1978 .

[40]  Xuan Zhu,et al.  JavaAHP: a web-based decision analysis tool for natural resource and environmental management , 2001, Environ. Model. Softw..

[41]  Oswald Marinoni,et al.  Implementation of the analytical hierarchy process with VBA in ArcGIS , 2004, Comput. Geosci..

[42]  Luis G. Vargas,et al.  Prediction, Projection And Forecasting , 1990 .

[43]  A. K. Maji,et al.  Drainage morphometry and its influence on landform characteristics in a basaltic terrain, Central India: a remote sensing and GIS approach , 2004 .

[44]  V. Doyuran,et al.  Landfill site selection by using geographic information systems , 2006 .

[45]  R. Horton EROSIONAL DEVELOPMENT OF STREAMS AND THEIR DRAINAGE BASINS; HYDROPHYSICAL APPROACH TO QUANTITATIVE MORPHOLOGY , 1945 .

[46]  K. N. Hjerdt,et al.  A new topographic index to quantify downslope controls on local drainage , 2004 .

[47]  F. Troiani,et al.  The use of the Stream Length–Gradient index in morphotectonic analysis of small catchments: A case study from Central Italy , 2008 .

[48]  Fulong Wu,et al.  SimLand: A Prototype to Simulate Land Conversion Through the Integrated GIS and CA with AHP-Derived Transition Rules , 1998, Int. J. Geogr. Inf. Sci..

[49]  A. D. Abrahams Channel Networks: A Geomorphological Perspective , 1984 .

[50]  Frank J. Pazzaglia,et al.  Geomorphic expression of active tectonics in a rapidly-deforming forearc, Sila massif, Calabria, southern Italy , 2004 .

[51]  L. Ayalew,et al.  Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan , 2004 .

[52]  M. Ramírez-Herrera Geomorphic assessment of active tectonics in the Acambay graben, Mexican Volcanic Belt , 1998 .

[53]  P. Drake,et al.  Regional variations in tectonic geomorphology along a segmented convergent plate boundary pacific coast of Costa Rica , 1988 .

[54]  J. Mugnier,et al.  Control of detachment dip on drainage development in regions of active fault-propagation folding , 2002 .

[55]  P. Jankowski,et al.  Integration of GIS-Based Suitability Analysis and Multicriteria Evaluation in a Spatial Decision Support System for Route Selection , 1994 .

[56]  Dara Entekhabi,et al.  Basin hydrologic response relations to distributed physiographic descriptors and climate , 2001 .

[57]  R. Hanssen Radar Interferometry: Data Interpretation and Error Analysis , 2001 .

[58]  J. T. Hack,et al.  Stream-profile analysis and stream-gradient index , 1973 .

[59]  Jacek Malczewski,et al.  Implementing an extension of the analytical hierarchy process using ordered weighted averaging operators with fuzzy quantifiers in ArcGIS , 2008, Comput. Geosci..

[60]  J. Voogd,et al.  Multicriteria evaluation for urban and regional planning , 1982 .

[61]  D. Maidment Arc hydro : GIS for water resources , 2002 .

[62]  E. Esu,et al.  Application of remote-sensing data to groundwater exploration: A case study of the Cross River State, southeastern Nigeria , 1998 .

[63]  M. Seta,et al.  Quantitative morphotectonic analysis as a tool for detecting deformation patterns in soft-rock terrains: a case study from the southern Marches, Italy / Analyse morphotectonique quantitative dans une province lithologique enregistrant mal les déformations : les Marches méridionales, Italie , 2004 .

[64]  F. Lucazeau,et al.  Effect of drainage area on hypsometry from an analysis of small-scale drainage basins in the Siwalik Hills (Central Nepal) , 1999 .

[65]  H. Selim,et al.  Tectonics of the buried Kırklareli Fault, Thrace Region, NW Turkey , 2013 .

[66]  X. Pichon,et al.  Strain distribution over the east Mediterranean ridge: A synthesis incorporating new Sea-Beam data , 1982 .

[67]  K. Beven,et al.  A physically based, variable contributing area model of basin hydrology , 1979 .

[68]  Samo Drobne,et al.  Multi-attribute Decision Analysis in GIS: Weighted Linear Combination and Ordered Weighted Averaging , 2009, Informatica.

[69]  N. Pinter,et al.  Active Tectonics: Earthquakes, Uplift, and Landscape , 1995 .

[70]  J. Seibert,et al.  On the calculation of the topographic wetness index: evaluation of different methods based on field observations , 2005 .

[71]  Tammo S. Steenhuis,et al.  Drying front in a sloping aquifer: Nonlinear effects , 2004 .

[72]  J. Galindo‐Zaldívar,et al.  Testing the sensitivity of geomorphic indices in areas of low-rate active folding (eastern Betic Cordillera, Spain) , 2009 .

[73]  J. Adinarayana,et al.  Quantification of morphometric characterization and prioritization for management planning in semi-arid tropics of India: A remote sensing and GIS approach , 2014 .

[74]  José Vicente Pérez-Peña,et al.  Spatial analysis of stream power using GIS: SLk anomaly maps , 2009 .

[75]  Timothy C. Coburn,et al.  Geostatistics for Natural Resources Evaluation , 2000, Technometrics.

[76]  David G. Tarboton,et al.  On the extraction of channel networks from digital elevation data , 1991 .

[77]  M. Arian,et al.  Morphotectonic Analysis in the Ghezel Ozan River Basin, NW Iran , 2011 .

[78]  Reza Banai,et al.  Fuzziness in Geographical Information Systems: Contributions from the Analytic Hierarchy Process , 1993, Int. J. Geogr. Inf. Sci..

[79]  Christian Conoscenti,et al.  GIS analysis to assess landslide susceptibility in a fluvial basin of NW Sicily (Italy) , 2008 .

[80]  T. Seleem Analysis and Tectonic Implication of DEM-Derived Structural Lineaments, Sinai Peninsula, Egypt , 2013 .

[81]  Florent Joerin,et al.  Using GIS and outranking multicriteria analysis for land-use suitability assessment , 2001, Int. J. Geogr. Inf. Sci..

[82]  M. Seta,et al.  Morphological and geochemical evidence of neotectonics in the volcanic area of Monti Vulsini (Latium, Italy) , 2003 .

[83]  N. Cressie The origins of kriging , 1990 .

[84]  T. Oguchi,et al.  Drainage density, slope angle, and relative basin position in Japanese bare lands from high-resolution DEMs , 2004 .

[85]  K. Beven,et al.  THE PREDICTION OF HILLSLOPE FLOW PATHS FOR DISTRIBUTED HYDROLOGICAL MODELLING USING DIGITAL TERRAIN MODELS , 1991 .

[86]  M. Bohnhoff,et al.  Crustal investigation of the Hellenic subduction zone using wide aperture seismic data , 2001 .

[87]  A. N. Strahler Hypsometric (area-altitude) analysis of erosional topography. , 1952 .

[88]  Zhong Li Watershed modeling using arc hydro based on DEMs: a case study in Jackpine watershed , 2014, Environmental Systems Research.

[89]  A. Ribolini,et al.  Drainage network geometry versus tectonics in the Argentera Massif (French–Italian Alps) , 2008 .

[90]  Deanne Bird,et al.  Evaluation of morphometric parameters of drainage networks derived from topographic maps and DEM in point of floods , 2009 .

[91]  T. Saaty,et al.  The Analytic Hierarchy Process , 1985 .

[92]  K. Feigl,et al.  The displacement field of the Landers earthquake mapped by radar interferometry , 1993, Nature.

[93]  Alan D. Howard,et al.  BADLAND MORPHOLOGY AND EVOLUTION: INTERPRETATION USING A SIMULATION MODEL , 1997 .