Full‐CI quantum chemistry using the density matrix renormalization group

We describe how density matrix renormalization group (DMRG) can be used to solve the full configuration interaction problem in quantum chemistry. As an illustration of the potential of this method, we apply it to a paramagnetic molecule. In particular, we show the effect of various basis set, the scaling as the fourth power of the size of the problem, and compare the DMRG with other methods. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 79: 331–342, 2000

[1]  K. Wilson,et al.  The Renormalization group and the epsilon expansion , 1973 .

[2]  Wang,et al.  Generalized gradient approximation for the exchange-correlation hole of a many-electron system. , 1996, Physical review. B, Condensed matter.

[3]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[4]  C. Daul DENSITY FUNCTIONAL THEORY APPLIED TO THE EXCITED STATES OF COORDINATION COMPOUNDS , 1994 .

[5]  D H Weinstein,et al.  Modified Ritz Method. , 1934, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Richard L. Martin,et al.  Ab initio quantum chemistry using the density matrix renormalization group , 1998 .

[7]  E. Davidson The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices , 1975 .

[8]  A. Szabo,et al.  Modern quantum chemistry , 1982 .

[9]  M. Levy Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Paul G. Mezey,et al.  A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions , 1989 .

[11]  White,et al.  Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.

[12]  A. Rappé,et al.  Estimation of magnetic exchange coupling constants in bridged dimer complexes , 1992 .

[13]  Karen Hallberg Density Matrix Renormalization , 1999 .

[14]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[15]  W. Niessen,et al.  Density localization of atomic and molecular orbitals , 1973 .

[16]  J. Bray,et al.  Computer renormalization-group technique applied to the Hubbard model , 1978 .

[17]  White,et al.  Real-space quantum renormalization groups. , 1992, Physical review letters.

[18]  G. G. Hall The molecular orbital theory of chemical valency VIII. A method of calculating ionization potentials , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[19]  White Spin Gaps in a Frustrated Heisenberg Model for CaV4O9. , 1996, Physical review letters.

[20]  Mel Levy,et al.  Electron densities in search of Hamiltonians , 1982 .

[21]  Clemens C. J. Roothaan,et al.  New Developments in Molecular Orbital Theory , 1951 .

[22]  Klaus Ruedenberg,et al.  Localized Atomic and Molecular Orbitals , 1963 .

[23]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[24]  J. Almlöf,et al.  Principles for a direct SCF approach to LICAO–MOab‐initio calculations , 1982 .

[25]  Louis Noodleman,et al.  The Xα valence bond theory of weak electronic coupling. Application to the low‐lying states of Mo2Cl84− , 1979 .

[26]  J. Bray,et al.  Computer renormalization-group calculations of the2kFand4kFcorrelation functions of an extended one-dimensional Hubbard model , 1980 .

[27]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[28]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[29]  H. R. Krishnamurthy,et al.  Renormalization-group approach to the Anderson model of dilute magnetic alloys. I. Static properties for the symmetric case , 1980 .

[30]  Vincenzo Barone,et al.  Density functional calculations of magnetic exchange interactions in polynuclear transition metal complexes , 1997 .

[31]  S. F. Boys Construction of Some Molecular Orbitals to Be Approximately Invariant for Changes from One Molecule to Another , 1960 .

[32]  K. Wilson The renormalization group: Critical phenomena and the Kondo problem , 1975 .