Two novel classes of linear high-order structure-preserving schemes for the generalized nonlinear Schrödinger equation

Abstract In this letter, we present two novel classes of linear high-order mass-preserving schemes for the generalized nonlinear Schrodinger equation. The original model is first equivalently transformed into a pair of real-valued equations, which are then linearized by the extrapolation technique. We employ the symplectic Runge–Kutta method for the resulting linearized model to derive a class of linear mass-conserving schemes. To improve the accuracy of the schemes, a prediction–correction strategy is applied to develop a class of prediction–correction schemes. The proposed methods are shown to be linear, mass-preserving and may reach high order. To match the high precision of temporal discretization, the Fourier pseudo-spectral method is utilized for spatial discretization. Numerical results are shown to verify the accuracy and conservation property of the proposed schemes.

[1]  Yifa Tang,et al.  Symplectic and multi-symplectic methods for the nonlinear Schrodinger equation , 2002 .

[2]  Xinyuan Wu,et al.  Functionally Fitted Energy-Preserving Methods for Solving Oscillatory Nonlinear Hamiltonian Systems , 2016, SIAM J. Numer. Anal..

[3]  Chi-Wang Shu,et al.  Local discontinuous Galerkin methods for nonlinear Schrödinger equations , 2005 .

[4]  D. Griffiths,et al.  Introduction to Quantum Mechanics , 1960 .

[5]  L. Kong,et al.  Efficient energy‐preserving scheme of the three‐coupled nonlinear Schrödinger equation , 2019, Mathematical Methods in the Applied Sciences.

[6]  Jia Zhao,et al.  Energy-stable Runge-Kutta schemes for gradient flow models using the energy quadratization approach , 2019, Appl. Math. Lett..

[7]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[8]  Akira Hasegawa,et al.  Optical solitons in fibers , 1993, International Commission for Optics.

[9]  Qiang Du,et al.  Dynamics of Rotating Bose-Einstein Condensates and its Efficient and Accurate Numerical Computation , 2006, SIAM J. Appl. Math..

[10]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[11]  Qianshun Chang,et al.  Difference Schemes for Solving the Generalized Nonlinear Schrödinger Equation , 1999 .

[12]  Tingchun Wang,et al.  Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions , 2013, J. Comput. Phys..

[13]  Jie Shen,et al.  A Fourth-Order Time-Splitting Laguerre-Hermite Pseudospectral Method for Bose-Einstein Condensates , 2005, SIAM J. Sci. Comput..

[14]  J. M. Franco,et al.  Fourth-Order Symmetric DIRK Methods for Periodic Stiff Problems , 2003, Numerical Algorithms.

[15]  Qi Hong,et al.  An efficient energy-preserving algorithm for the Lorentz force system , 2019, Appl. Math. Comput..

[16]  Songhe Song,et al.  Novel high-order energy-preserving diagonally implicit Runge-Kutta schemes for nonlinear Hamiltonian ODEs , 2020, Appl. Math. Lett..

[17]  Yuezheng Gong,et al.  Arbitrarily high-order linear energy stable schemes for gradient flow models , 2020, J. Comput. Phys..

[18]  Jiang Yang,et al.  The scalar auxiliary variable (SAV) approach for gradient flows , 2018, J. Comput. Phys..

[19]  L. Brugnano,et al.  Hamiltonian Boundary Value Methods (Energy Conserving Discrete Line Integral Methods) , 2009, 0910.3621.

[20]  Karl Glasner,et al.  Improving the accuracy of convexity splitting methods for gradient flow equations , 2016, J. Comput. Phys..

[21]  M. Qin,et al.  A sixth order averaged vector field method , 2014, 1412.5346.

[22]  Tingchun Wang,et al.  Two completely explicit and unconditionally convergent Fourier pseudo-spectral methods for solving the nonlinear Schrödinger equation , 2020, J. Comput. Phys..

[23]  C. Sulem,et al.  The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .

[24]  Wensheng Tang,et al.  Time finite element methods: A unified framework for numerical discretizations of ODEs , 2012, Appl. Math. Comput..

[25]  Lili Ju,et al.  Efficient linear schemes with unconditional energy stability for the phase field elastic bending energy model , 2017 .

[26]  Haihui Zhang,et al.  Efficient schemes for the damped nonlinear Schrödinger equation in high dimensions , 2020, Appl. Math. Lett..

[27]  Jie Shen,et al.  Two classes of linearly implicit local energy-preserving approach for general multi-symplectic Hamiltonian PDEs , 2020, J. Comput. Phys..

[28]  Jie Shen,et al.  Stabilized Predictor-Corrector Schemes for Gradient Flows with Strong Anisotropic Free Energy , 2018 .

[29]  E. Hairer Energy-preserving variant of collocation methods 1 , 2010 .

[30]  L. Kong,et al.  A novel kind of efficient symplectic scheme for Klein–Gordon–Schrödinger equation , 2019, Applied Numerical Mathematics.

[31]  W. Ketterle,et al.  Bose-Einstein condensation , 1997 .

[32]  Yushun Wang,et al.  Arbitrarily high-order energy-preserving schemes for the Camassa-Holm equation , 2019, ArXiv.

[33]  G. Quispel,et al.  A new class of energy-preserving numerical integration methods , 2008 .

[34]  G. Akrivis,et al.  On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation , 1991 .

[35]  Buyang Li,et al.  Energy-Decaying Extrapolated RK-SAV Methods for the Allen-Cahn and Cahn-Hilliard Equations , 2019, SIAM J. Sci. Comput..

[36]  V. G. Makhankov,et al.  Dynamics of classical solitons (in non-integrable systems) , 1978 .