Study of Sustainability and Scalability in the Cp*Rh(III)-Catalyzed Direct C–H Amidation with 1,4,2-Dioxazol-5-ones

The practical aspects of Cp*Rh(III)-catalyzed direct C–H amidation with 1,4,2-dioxazol-5-ones were investigated on the operational safety, use of green solvent, and scalability. Differential scanning calorimeter (DSC) measurement showed that 3-phenyl-1,4,2-dioxazol-5-one is thermally stable while benzoyl azide, a conventionally employed precursor of acyl nitrene, rapidly decomposes to isocyanate. It was confirmed that the replacement of acyl azide with 1,4,2-dioxazol-5-one brings not only high reactivity but also improvement in safety. In respect to a green process development, functional group tolerant Cp*Rh(III) catalyst exhibited high reactivity in ethyl acetate, successfully replacing 1,2-dichloroethane solvent used in the original report. Upon the validation on safety and environmental concerns, scalability was also tested. Two different types of arenes bearing pyridyl and oxime directing groups showed excellent conversions on tens of gram scale reactions, and single recrystallization gave desired pr...

[1]  C. Siegel,et al.  Process Development of a GCS Inhibitor Including Demonstration of Lossen Rearrangement on Kilogram Scale , 2015 .

[2]  Sukbok Chang,et al.  Mechanistic studies on the Rh(III)-mediated amido transfer process leading to robust C-H amination with a new type of amidating reagent. , 2015, Journal of the American Chemical Society.

[3]  Sukbok Chang,et al.  Transition-metal-catalyzed C-N bond forming reactions using organic azides as the nitrogen source: a journey for the mild and versatile C-H amination. , 2015, Accounts of chemical research.

[4]  Pitambar Patel,et al.  Cobalt(III)-Catalyzed C–H Amidation of Arenes using Acetoxycarbamates as Convenient Amino Sources under Mild Conditions , 2015 .

[5]  T. Laird Editorial Reproducibility of Synthetic Results , 2014 .

[6]  D. Musaev,et al.  Comparative Investigations of Cp*-Based Group 9 Metal-Catalyzed Direct C–H Amination of Benzamides , 2014 .

[7]  C. Bolm,et al.  Methionine and Buthionine Sulfoximines: Syntheses under Mild and Safe Imidation/Oxidation Conditions , 2014 .

[8]  J. Mahy,et al.  Catalytic C-H amination: a reaction now accessible to engineered natural enzymes. , 2014, Angewandte Chemie.

[9]  C. Bolm,et al.  Light-induced ruthenium-catalyzed nitrene transfer reactions: a photochemical approach towards N-acyl sulfimides and sulfoximines. , 2014, Angewandte Chemie.

[10]  F. Glorius,et al.  Formal SN‐Type Reactions in Rhodium(III)‐Catalyzed CH Bond Activation , 2014 .

[11]  Sukbok Chang,et al.  Iridium-catalyzed C-H amination with anilines at room temperature: compatibility of iridacycles with external oxidants. , 2014, Journal of the American Chemical Society.

[12]  Sukbok Chang,et al.  Orthogonal reactivity of acyl azides in C-H activation: dichotomy between C-C and C-N amidations based on catalyst systems. , 2014, Organic letters.

[13]  Sukbok Chang,et al.  Mechanistic studies of the rhodium-catalyzed direct C-H amination reaction using azides as the nitrogen source. , 2014, Journal of the American Chemical Society.

[14]  F. Patureau,et al.  Oxidative C-H amination reactions. , 2014, Chemical Society reviews.

[15]  Eberhard Guntrum,et al.  Sanofi’s Solvent Selection Guide: A Step Toward More Sustainable Processes , 2013 .

[16]  N. Chatani,et al.  Catalytic functionalization of C(sp2)-H and C(sp3)-H bonds by using bidentate directing groups. , 2013, Angewandte Chemie.

[17]  R. Sarpong,et al.  Intramolecular C(sp3)–H amination , 2013 .

[18]  Sukbok Chang,et al.  Ir(III)-catalyzed mild C-H amidation of arenes and alkenes: an efficient usage of acyl azides as the nitrogen source. , 2013, Journal of the American Chemical Society.

[19]  Sukbok Chang,et al.  Ruthenium-catalyzed direct C-H amidation of arenes including weakly coordinating aromatic ketones. , 2013, Chemistry.

[20]  F. Glorius,et al.  Beyond directing groups: transition-metal-catalyzed C-H activation of simple arenes. , 2012, Angewandte Chemie.

[21]  Junichiro Yamaguchi,et al.  C-H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals. , 2012, Angewandte Chemie.

[22]  C. Bruneau,et al.  Ruthenium(II)-catalyzed C-H bond activation and functionalization. , 2012, Chemical reviews.

[23]  Ji Young Kim,et al.  Rhodium-catalyzed intermolecular amidation of arenes with sulfonyl azides via chelation-assisted C-H bond activation. , 2012, Journal of the American Chemical Society.

[24]  P. Yin,et al.  Synthesis of 2,5-disubstituted oxazoles and oxazolines catalyzed by ruthenium(II) porphyrin and simple copper salts. , 2012, The Journal of organic chemistry.

[25]  Fen Wang,et al.  C-C, C-O and C-N bond formation via rhodium(III)-catalyzed oxidative C-H activation. , 2012, Chemical Society reviews.

[26]  Sukbok Chang,et al.  Intramolecular oxidative diamination and aminohydroxylation of olefins under metal-free conditions. , 2012, Organic letters.

[27]  Trevor Laird,et al.  Green Chemistry is Good Process Chemistry , 2012 .

[28]  T. Ramirez,et al.  Recent advances in transition metal-catalyzed sp3 C-H amination adjacent to double bonds and carbonyl groups. , 2012, Chemical Society reviews.

[29]  Sukbok Chang,et al.  Intermolecular oxidative C-N bond formation under metal-free conditions: control of chemoselectivity between aryl sp2 and benzylic sp3 C-H bond imidation. , 2011, Journal of the American Chemical Society.

[30]  Ji Young Kim,et al.  Recent advances in the transition metal-catalyzed twofold oxidative C-H bond activation strategy for C-C and C-N bond formation. , 2011, Chemical Society reviews.

[31]  Concepción Jiménez-González,et al.  Using the Right Green Yardstick: Why Process Mass Intensity Is Used in the Pharmaceutical Industry To Drive More Sustainable Processes , 2011 .

[32]  Concepción Jiménez-González,et al.  Expanding GSK's solvent selection guide ― embedding sustainability into solvent selection starting at medicinal chemistry , 2011 .

[33]  P. Baran,et al.  If C-H bonds could talk: selective C-H bond oxidation. , 2011, Angewandte Chemie.

[34]  Sukbok Chang,et al.  Intramolecular oxidative C-N bond formation for the synthesis of carbazoles: comparison of reactivity between the copper-catalyzed and metal-free conditions. , 2011, Journal of the American Chemical Society.

[35]  M. Gaunt,et al.  Recent developments in natural product synthesis using metal-catalysed C-H bond functionalisation. , 2011, Chemical Society reviews.

[36]  P. Dauban,et al.  Catalytic C-H amination: the stereoselectivity issue. , 2011, Chemical Society reviews.

[37]  Daniel Morton,et al.  Guiding principles for site selective and stereoselective intermolecular C-H functionalization by donor/acceptor rhodium carbenes. , 2011, Chemical Society reviews.

[38]  C. Yeung,et al.  Catalytic dehydrogenative cross-coupling: forming carbon-carbon bonds by oxidizing two carbon-hydrogen bonds. , 2011, Chemical reviews.

[39]  T. Laird Safety Special Section Editorial , 2010 .

[40]  James C. Collins,et al.  Direct azole amination: C-H functionalization as a new approach to biologically important heterocycles. , 2010, Angewandte Chemie.

[41]  J. Ellman,et al.  Rhodium-catalyzed C-C bond formation via heteroatom-directed C-H bond activation. , 2010, Chemical reviews.

[42]  Chang-Liang Sun,et al.  Pd-catalyzed oxidative coupling with organometallic reagents via C-H activation. , 2010, Chemical communications.

[43]  Michael G. Vetelino,et al.  Carbonyldiimidazole-mediated Lossen rearrangement. , 2009, Organic letters.

[44]  P. Dauban,et al.  Catalytic C-H amination: recent progress and future directions. , 2009, Chemical communications.

[45]  Peter J. Dunn,et al.  Green chemistry tools to influence a medicinal chemistry and research chemistry based organisation , 2008 .

[46]  Trevor Laird,et al.  How Safe Are Your Reactions , 2004 .

[47]  Hiroshi Iwamura,et al.  Amplification of enantiomeric excess in a proline-mediated reaction. , 2004, Angewandte Chemie.

[48]  Concepción Jiménez-González,et al.  Expanding GSK’s Solvent Selection Guide—application of life cycle assessment to enhance solvent selections , 2004 .

[49]  J. Bercaw,et al.  Understanding and exploiting C–H bond activation , 2002, Nature.

[50]  D. Ende,et al.  A Calorimetric Investigation To Safely Scale-Up a Curtius Rearrangement of Acryloyl Azide , 1998 .

[51]  Linda D. Tuma Identification of a safe diazotransfer reagent , 1994 .

[52]  L. Bretherick,et al.  Bretherick's Handbook of Reactive Chemical Hazards , 1990 .

[53]  E. Scriven,et al.  Azides: their preparation and synthetic uses , 1988 .

[54]  J. Sauer,et al.  Konkurrenzexperimente zum nachweis von acylnitrenen , 1987 .

[55]  W. Middleton 1,3,4-Dioxazol-2-ones: a potentially hazardous class of compounds , 1983 .

[56]  L. Bauer,et al.  The Chemistry of Hydroxamic Acids and N‐Hydroxyimides , 1974 .

[57]  J. Sauer,et al.  Acylnitrene als zwischenstufen bei der photolyse Fünfgliedriger heterocyclen , 1974 .

[58]  J. Sauer,et al.  Thermolyse und photolyse von 3.4-Diphenyl-Δ 2-1.2.4-oxdiazolinon-(5) und 2.4-Diphenyl- Δ2-1.3.4-Oxdiazolinon-(5) , 1968 .

[59]  J. Sauer,et al.  Thermolyse und photolyse von 3-subtituierten Δ2- 1.4.2-dioxazolinonen-(5), Δ2-1.4.2-dioxazolin-thionen-(5) und 4-substituierten Δ3-1.2.5.3-thiadioxazolin-s-oxiden , 1968 .

[60]  H. L. Yale The Hydroxamic Acids. , 1943 .

[61]  Theodor Curtius 20. Hydrazide und Azide organischer Säuren I. Abhandlung , 1894 .

[62]  Theodor Curtius Ueber Stickstoffwasserstoffsäure (Azoimid) N3H , 1890 .

[63]  W. Lossen Ueber die Structurformel des Hydroxylamins und seiner amidartigen Derivate , 1875 .

[64]  W. Lossen Ueber Benzoylderivate des Hydroxylamins , 1872 .

[65]  Heinrick Lossen Ueber die Oxalohydroxamsäure , 1869 .