SummaryA new method is developed to produce strong laws of invariance principle without making use of the Skorohod representation. As an example, it will be proved that
$${{\mathop {\lim }\limits_{n \to \infty } \left( {S_n - W(n)} \right)} \mathord{\left/ {\vphantom {{\mathop {\lim }\limits_{n \to \infty } \left( {S_n - W(n)} \right)} {n^{{1 \mathord{\left/ {\vphantom {1 {6 + \varepsilon }}} \right. \kern-\nulldelimiterspace} {6 + \varepsilon }}} }}} \right. \kern-\nulldelimiterspace} {n^{{1 \mathord{\left/ {\vphantom {1 {6 + \varepsilon }}} \right. \kern-\nulldelimiterspace} {6 + \varepsilon }}} }} = 0$$
with probability 1, for any g3>0, where Sn=X1 + ... +Xn, Xi is a sequence of i.i.d.r.v.'s with P(Xi<t)=F(t), and F(t) is a distribution function obeying (i), (ii) and W(n) is a suitable Wiener-process. Strassen in [1], proved (under weaker conditions):
$$S_n - W\left( n \right) = O\left( {\sqrt[4]{{n{\text{ log log }}n}}\sqrt {{\text{log }}n} {\text{ }}} \right)$$
with probability one. He conjectured that if
$$S_n - W\left( n \right) = o\left( {\sqrt[4]{{n{\text{ log log }}n}}\sqrt {{\text{log }}n} {\text{ }}} \right)$$
then F(x) = Φ(x) where Φ(.) is the unit normal distribution function. (See also [2], [6] and [7].) Our result above is a negative answer to this question.
[1]
A. C. Aitken,et al.
Random variables and probability distributions
,
1938
.
[2]
B. Gnedenko,et al.
Limit distributions for sums of shrunken random variables
,
1954
.
[3]
B. Gnedenko,et al.
Limit Distributions for Sums of Independent Random Variables
,
1955
.
[4]
L. Breiman.
On the tail behavior of sums of independent random variables
,
1967
.
[5]
Volker Strassen,et al.
Almost sure behavior of sums of independent random variables and martingales
,
1967
.
[6]
D. Brillinger.
An Asymptotic Representation of the Sample Distribution Function
,
1969
.
[7]
J. Kiefer.
On the deviations in the Skorokhod-Strassen approximation scheme
,
1969
.
[8]
P. Révész.
Testing of density functions
,
1971
.
[9]
J. Kiefer.
Skorohod embedding of multivariate RV's, and the sample DF
,
1972
.
[10]
David G. Kostka.
Deviations in the Skorohod-strassen approximation scheme
,
1972
.
[11]
M. J. Wichura,et al.
Some Strassen-Type Laws of the Iterated Logarithm for Multiparameter Stochastic Processes with Independent Increments
,
1973
.