ESTUDOS FILOGENÉTICOS DA ORDEM CHARACIFORMES: TENDÊNCIAS E CARÊNCIAS PHYLOGENETIC STUDIES OF THE ORDER CHARACIFORMES: TRENDS AND LACKS

It is estimated that the number of species existing today is nearly 3 to 5 million. Among freshwater fish, the order Characiformes is among the most diverse, with nearly 2.000 species. The classification of this group has been re-evaluated and further studies should be made to establish their phylogenetic relationships. Through scientometric data is possible to identify trends and knowledge development, indicating which approaches

[1]  O. Rieppel,et al.  Phylogenetics: Heed the father of cladistics , 2013, Nature.

[2]  R. May,et al.  Can We Name Earth's Species Before They Go Extinct? , 2013, Science.

[3]  George M. T. Mattox,et al.  Phylogenetic study of the Characinae (Teleostei: Characiformes: Characidae) , 2012 .

[4]  G. Ortí,et al.  Phylogenetic relationships within the speciose family Characidae (Teleostei: Ostariophysi: Characiformes) based on multilocus analysis and extensive ingroup sampling , 2011, BMC Evolutionary Biology.

[5]  Yijun Li,et al.  Parameter identification of the observed citation distribution , 2007, Scientometrics.

[6]  D. Rubinoff Utility of Mitochondrial DNA Barcodes in Species Conservation , 2006, Conservation biology : the journal of the Society for Conservation Biology.

[7]  Niklas Wahlberg,et al.  Synergistic effects of combining morphological and molecular data in resolving the phylogeny of butterflies and skippers , 2005, Proceedings of the Royal Society B: Biological Sciences.

[8]  R. DeSalle,et al.  Relationships among characiform fishes inferred from analysis of nuclear and mitochondrial gene sequences. , 2005, Molecular phylogenetics and evolution.

[9]  Alan Turner,et al.  Morphology's role in phylogeny reconstruction: perspectives from paleontology. , 2005, Systematic biology.

[10]  J. Wiens The role of morphological data in phylogeny reconstruction. , 2004, Systematic biology.

[11]  R. Olmstead,et al.  Phylogeny reconstruction: the role of morphology. , 2003, Systematic biology.

[12]  S. Carroll,et al.  Conflicting phylogenetic signals at the base of the metazoan tree , 2003, Evolution & development.

[13]  J. Inoue,et al.  Mitochondrial Genomics of Ostariophysan Fishes: Perspectives on Phylogeny and Biogeography , 2003, Journal of Molecular Evolution.

[14]  E. Bermingham,et al.  Population structure and biogeography of migratory freshwater fishes (Prochilodus: Characiformes) in major South American rivers , 2001, Molecular ecology.

[15]  J. Carpenter Towards simultaneous analysis of morphological and molecular data in Hymenoptera , 1999 .

[16]  A. Meyer,et al.  Patterns of nucleotide change in mitochondrial ribosomal RNA genes and the phylogeny of piranhas , 1996, Journal of Molecular Evolution.

[17]  J. S. Nelson,et al.  Fishes of the world. , 1978 .

[18]  J. M. Mirande Phylogeny of the family Characidae (Teleostei: Characiformes): from characters to taxonomy , 2010 .

[19]  D. Janies,et al.  Book Review: Dynamic Homology and Phylogenetic Systematics: A Unified Approach Using POY , 2008 .

[20]  Naércio A. Menezes,et al.  Catálogo das espécies de peixes de água doce do Brasil , 2007 .

[21]  Birger Hjørland,et al.  Practical potentials of Bradford's law: a critical examination of the received view , 2007, J. Documentation.

[22]  R. Reis,et al.  Check list of the freshwater fishes of South and Central America , 2003 .

[23]  Jean Tague-Sutcliffe,et al.  An Introduction to Informetrics , 1992, Inf. Process. Manag..