Ranking and screening multiple criteria alternatives with partial information and use of ordinal and cardinal strength of preferences

This paper consists of three parts: 1) some theories and an efficient algorithm for ranking and screening multicriteria alternatives when there exists partial information on the decision maker's preferences; 2) generation of partial information using variety of methods; and 3) the existence of ordinal and cardinal functions based on and strengths of preferences. We demonstrate that strengths of preference concept can be very effectively used to generate the partial information on preferences. We propose axioms for ordinal and cardinal (measurable) value functions. An algorithm is developed for ranking and screening alternatives when there exists partial information about the preferences and the ordering of alternatives. The proposed algorithm obtains the same information very efficiently while by solving one mathematical programming problem many alternatives can be ranked and screened. Several examples are discussed and results of some computational experiments are reported.

[1]  Gordon B. Hazen,et al.  Partial Information, Dominance, and Potential Optimality in Multiattribute Utility Theory , 1986, Oper. Res..

[2]  István Borgulya A ranking method for multiple-criteria decision-making , 1997, Int. J. Syst. Sci..

[3]  Raimo P. Hämäläinen,et al.  Preference Assessment by Imprecise Ratio Statements , 1992, Oper. Res..

[4]  Chen-Tung Chen,et al.  Fuzzy Credibility Relation Method for Multiple Criteria Decision-Making Problems , 1997, Inf. Sci..

[5]  Wade D. Cook,et al.  A multiple-criteria composite index model for quantitative and qualitative data , 1994 .

[6]  Chelsea C. White,et al.  A penalty function approach to alternative pairwise comparisons in ISMAUT , 1993, IEEE Trans. Syst. Man Cybern..

[7]  Behnam Malakooti Theories and an exact interactive paired-comparison approach for discrete multiple-criteria problems , 1989, IEEE Trans. Syst. Man Cybern..

[8]  Allan D. Shocker,et al.  Linear programming techniques for multidimensional analysis of preferences , 1973 .

[9]  M. Karwan,et al.  A Lagrangian relaxation approach to solve the second phase of the exam scheduling problem , 1988 .

[10]  A. Ravindran,et al.  A comparative study of interactive tradeoff cutting plane methods for MOMP , 1992 .

[11]  Roman Krzysztofowicz,et al.  Strength of preference and risk attitude in utility measurement , 1983 .

[12]  Jaap Van Brakel,et al.  Foundations of measurement , 1983 .

[13]  Aníbal Ollero,et al.  Fuzzy Methodologies for Interactive Multicriteria Optimization , 1980, IEEE Transactions on Systems, Man, and Cybernetics.

[14]  Andrew P. Sage,et al.  A model of multiattribute decisionmaking and trade-off weight determination under uncertainty , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[15]  T. Saaty,et al.  The Analytic Hierarchy Process , 1985 .

[16]  H. Moskowitz,et al.  Multiple-criteria robust interactive decision analysis (MCRID) for optimizing public policies , 1992 .

[17]  Behnam Malakooti,et al.  Measurable value functions for ranking and selection of groups of alternatives , 1991 .

[18]  Lucien Duckstein,et al.  Assessment errors in multiattribute utility functions , 1980 .

[19]  J. W. Hauge,et al.  Environmental decision making using dichotomous preferences , 1994, Proceedings of IEEE International Conference on Systems, Man and Cybernetics.

[20]  Zachary F. Lansdowne,et al.  Ordinal ranking methods for multicriterion decision making , 1996 .

[21]  Rakesh K. Sarin,et al.  Ranking with Partial Information: A Method and an Application , 1985, Oper. Res..

[22]  Behnam Malakooti,et al.  An Interactive Multiple Criteria Approach for Parameter Selection in Metal Cutting , 1989, Oper. Res..

[23]  Piet Rietveld,et al.  Ordinal data in multicriteria decision making, a stochastic dominance approach to siting nuclear power plants , 1992 .

[24]  Gin-Shuh Liang,et al.  Fuzzy MCDM based on ideal and anti-ideal concepts , 1999, Eur. J. Oper. Res..

[25]  F. Fernández,et al.  Multi-criteria analysis with partial information about the weighting coefficients , 1995 .

[26]  Carlos Francisco Simões Gomes,et al.  Multicriteria ranking with ordinal data , 1997 .

[27]  Oleg I. Larichev,et al.  ZAPROS-LM — A method and system for ordering multiattribute alternatives , 1995 .

[28]  R. Soland MULTICRITERIA OPTIMIZATION: A GENERAL CHARACTERIZATION OF EFFICIENT SOLUTIONS* , 1979 .

[29]  B. Malakooti Computer-aided facility layout selection (CAFLAS) with applications to multiple criteria manufacturing planning problems , 1987 .

[30]  Ahti Salo,et al.  Interactive decision aiding for group decision support , 1995 .

[31]  J. Siskos Assessing a set of additive utility functions for multicriteria decision-making , 1982 .

[32]  Lucien Duckstein,et al.  Screening discrete alternatives with imprecisely assessed additive multi-attribute functions , 1994 .

[33]  Michel Grabisch,et al.  On equivalence classes of fuzzy connectives-the case of fuzzy integrals , 1995, IEEE Trans. Fuzzy Syst..

[34]  Behnam Malakooti A generalized decomposable multiattribute utility function , 1991 .

[35]  Rakesh K Sarin Screening of multiattribute alternatives , 1977 .

[36]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[37]  H. Raiffa,et al.  Decisions with Multiple Objectives , 1993 .

[38]  H. Moskowitz,et al.  Comparative evaluation of prior versus progressive articulation of preference in bicriterion optimization , 1986 .

[39]  S. Zionts,et al.  An approach for solving discrete alternative multiple criteria problems involving ordinal criteria , 1988 .

[40]  Rodney H. Green,et al.  On Maximizing Discrimination in Multiple Criteria Decision Making , 1995 .

[41]  C. Carl Pegels,et al.  Overview of the decision support systems for production and operations management , 1987 .

[42]  Allan D. Shocker,et al.  Estimating the weights for multiple attributes in a composite criterion using pairwise judgments , 1973 .