Architecture and function of IFT complex proteins in ciliogenesis.

[1]  Nicholas W. Kin,et al.  Mutations in Traf3ip1 reveal defects in ciliogenesis, embryonic development, and altered cell size regulation. , 2011, Developmental biology.

[2]  A. Hoischen,et al.  Ciliopathies with skeletal anomalies and renal insufficiency due to mutations in the IFT-A gene WDR19. , 2011, American journal of human genetics.

[3]  E. Lorentzen,et al.  Biochemical Mapping of Interactions within the Intraflagellar Transport (IFT) B Core Complex , 2011, The Journal of Biological Chemistry.

[4]  C. Basquin,et al.  Crystal structure of the intraflagellar transport complex 25/27 , 2011, The EMBO journal.

[5]  Yun Lu,et al.  Intraflagellar transport delivers tubulin isotypes to sensory cilium middle and distal segments , 2011, Nature Cell Biology.

[6]  Martin A. M. Reijns,et al.  Human and mouse mutations in WDR35 cause short-rib polydactyly syndromes due to abnormal ciliogenesis. , 2011, American journal of human genetics.

[7]  W. Marshall,et al.  Ciliogenesis: building the cell's antenna , 2011, Nature Reviews Molecular Cell Biology.

[8]  G. Pazour,et al.  IFT20 is required for opsin trafficking and photoreceptor outer segment development , 2011, Molecular biology of the cell.

[9]  P. Scambler,et al.  An Ift80 mouse model of short rib polydactyly syndromes shows defects in hedgehog signalling without loss or malformation of cilia. , 2011, Human molecular genetics.

[10]  J. Schuurs-Hoeijmakers,et al.  C14ORF179 encoding IFT43 is mutated in Sensenbrenner syndrome , 2011, Journal of Medical Genetics.

[11]  B. Delaval,et al.  The cilia protein IFT88 is required for spindle orientation in mitosis , 2011, Nature Cell Biology.

[12]  Narendra Pathak,et al.  Tubulin Tyrosine Ligase-like Genes ttll3 and ttll6 Maintain Zebrafish Cilia Structure and Motility* , 2011, The Journal of Biological Chemistry.

[13]  H. Ko,et al.  Intraflagellar transport protein 122 antagonizes Sonic Hedgehog signaling and controls ciliary localization of pathway components , 2011, Proceedings of the National Academy of Sciences.

[14]  M. Nachury,et al.  Trafficking to the ciliary membrane: how to get across the periciliary diffusion barrier? , 2010, Annual review of cell and developmental biology.

[15]  William Arbuthnot Sir Lane,et al.  TULP3 bridges the IFT-A complex and membrane phosphoinositides to promote trafficking of G protein-coupled receptors into primary cilia. , 2010, Genes & development.

[16]  Christian Gilissen,et al.  Exome sequencing identifies WDR35 variants involved in Sensenbrenner syndrome. , 2010, American journal of human genetics.

[17]  J. Rosenbaum,et al.  CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content , 2010, The Journal of cell biology.

[18]  S. Geimer,et al.  Chlamydomonas IFT70/CrDYF-1 Is a Core Component of IFT Particle Complex B and Is Required for Flagellar Assembly , 2010, Molecular biology of the cell.

[19]  Rajat Rohatgi,et al.  The ciliary membrane. , 2010, Current opinion in cell biology.

[20]  B. Perkins,et al.  The intraflagellar transport protein ift80 is essential for photoreceptor survival in a zebrafish model of jeune asphyxiating thoracic dystrophy. , 2010, Investigative ophthalmology & visual science.

[21]  S. Gygi,et al.  The Conserved Bardet-Biedl Syndrome Proteins Assemble a Coat that Traffics Membrane Proteins to Cilia , 2010, Cell.

[22]  A. Tsun,et al.  The immunological synapse: a focal point for endocytosis and exocytosis , 2010, The Journal of cell biology.

[23]  K. Anderson,et al.  The primary cilium: a signalling centre during vertebrate development , 2010, Nature Reviews Genetics.

[24]  M. S. Miller,et al.  Direct Interactions of Intraflagellar Transport Complex B Proteins IFT88, IFT52, and IFT46* , 2010, The Journal of Biological Chemistry.

[25]  U. Wolfrum,et al.  Intraflagellar transport molecules in ciliary and nonciliary cells of the retina , 2010, The Journal of cell biology.

[26]  Danijela Maric,et al.  Molecular mechanisms of protein and lipid targeting to ciliary membranes , 2010, Journal of Cell Science.

[27]  J. Rosenbaum,et al.  Intraflagellar transport: it's not just for cilia anymore. , 2010, Current opinion in cell biology.

[28]  Deborah A. Cochran,et al.  The Chlamydomonas reinhardtii BBSome is an IFT cargo required for export of specific signaling proteins from flagella , 2009, The Journal of cell biology.

[29]  S. Dutcher,et al.  Retrograde Intraflagellar Transport Mutants Identify Complex A Proteins With Multiple Genetic Interactions in Chlamydomonas reinhardtii , 2009, Genetics.

[30]  G. Pazour,et al.  Intraflagellar transport is required for polarized recycling of the TCR/CD3 complex to the immune synapse , 2009, Nature Cell Biology.

[31]  S. Geimer,et al.  Electron-tomographic analysis of intraflagellar transport particle trains in situ , 2009, The Journal of cell biology.

[32]  U. Wolfrum,et al.  Different roles for KIF17 and kinesin II in photoreceptor development and maintenance , 2009, Developmental dynamics : an official publication of the American Association of Anatomists.

[33]  G. Pazour,et al.  Characterization of mouse IFT complex B. , 2009, Cell motility and the cytoskeleton.

[34]  G. Witman,et al.  HA-tagging of putative flagellar proteins in Chlamydomonas reinhardtii identifies a novel protein of intraflagellar transport complex B. , 2009, Cell motility and the cytoskeleton.

[35]  J. Gaertig,et al.  DYF-1 Is Required for Assembly of the Axoneme in Tetrahymena thermophila , 2009, Eukaryotic Cell.

[36]  S. Pfeffer,et al.  RhoBTB3: A Rho GTPase-Family ATPase Required for Endosome to Golgi Transport , 2009, Cell.

[37]  W. Snell,et al.  SnapShot: Intraflagellar Transport , 2009, Cell.

[38]  Hongmin Qin,et al.  Intraflagellar Transport (IFT) Protein IFT25 Is a Phosphoprotein Component of IFT Complex B and Physically Interacts with IFT27 in Chlamydomonas , 2009, PloS one.

[39]  P. Bastin,et al.  A novel function for the atypical small G protein Rab-like 5 in the assembly of the trypanosome flagellum , 2009, Journal of Cell Science.

[40]  S. Sukumaran,et al.  Early defects in photoreceptor outer segment morphogenesis in zebrafish ift57, ift88 and ift172 Intraflagellar Transport mutants , 2009, Vision Research.

[41]  Maurice J. Kernan,et al.  An IFT-A Protein Is Required to Delimit Functionally Distinct Zones in Mechanosensory Cilia , 2008, Current Biology.

[42]  G. Pazour,et al.  The Golgin GMAP210/TRIP11 Anchors IFT20 to the Golgi Complex , 2008, PLoS genetics.

[43]  D. Mitchell,et al.  ODA16 aids axonemal outer row dynein assembly through an interaction with the intraflagellar transport machinery , 2008, The Journal of cell biology.

[44]  N. Bhattacharyya,et al.  Huntington’s disease: roles of huntingtin‐interacting protein 1 (HIP‐1) and its molecular partner HIPPI in the regulation of apoptosis and transcription , 2008, The FEBS journal.

[45]  T. Schoeb,et al.  The Oak Ridge Polycystic Kidney mouse: Modeling ciliopathies of mice and men , 2008, Developmental dynamics : an official publication of the American Association of Anatomists.

[46]  Jessica K. Polka,et al.  Implications for Kinetochore-Microtubule Attachment from the Structure of an Engineered Ndc80 Complex , 2008, Cell.

[47]  P. Sengupta,et al.  elipsa is an early determinant of ciliogenesis that links the IFT particle to membrane-associated small GTPase Rab8 , 2008, Nature Cell Biology.

[48]  M. Gorovsky,et al.  Different effects of Tetrahymena IFT172 domains on anterograde and retrograde intraflagellar transport. , 2008, Molecular biology of the cell.

[49]  J. Besharse,et al.  The homodimeric kinesin, Kif17, is essential for vertebrate photoreceptor sensory outer segment development. , 2008, Developmental biology.

[50]  J. Shah,et al.  THM1 negatively modulates mouse sonic hedgehog signal transduction and affects retrograde intraflagellar transport in cilia , 2008, Nature Genetics.

[51]  M. P. Healey,et al.  An Essential Role for DYF-11/MIP-T3 in Assembling Functional Intraflagellar Transport Complexes , 2008, PLoS genetics.

[52]  M. Gorovsky,et al.  Tetrahymena IFT122A is not essential for cilia assembly but plays a role in returning IFT proteins from the ciliary tip to the cell body , 2008, Journal of Cell Science.

[53]  Yun Lu,et al.  The Conserved Proteins CHE-12 and DYF-11 Are Required for Sensory Cilium Function in Caenorhabditis elegans , 2008, Genetics.

[54]  Y. Iino,et al.  Caenorhabditis elegans DYF‐11, an orthologue of mammalian Traf3ip1/MIP‐T3, is required for sensory cilia formation , 2007, Genes to cells : devoted to molecular & cellular mechanisms.

[55]  Yan Liu,et al.  The zebrafish fleer gene encodes an essential regulator of cilia tubulin polyglutamylation. , 2007, Molecular biology of the cell.

[56]  V. Sheffield,et al.  A Core Complex of BBS Proteins Cooperates with the GTPase Rab8 to Promote Ciliary Membrane Biogenesis , 2007, Cell.

[57]  Colin A. Johnson,et al.  IFT80, which encodes a conserved intraflagellar transport protein, is mutated in Jeune asphyxiating thoracic dystrophy , 2007, Nature Genetics.

[58]  K. Gengyo-Ando,et al.  IFT‐81 and IFT‐74 are required for intraflagellar transport in C. elegans , 2007, Genes to cells : devoted to molecular & cellular mechanisms.

[59]  G. Pazour,et al.  Functional analysis of an individual IFT protein: IFT46 is required for transport of outer dynein arms into flagella , 2007, The Journal of cell biology.

[60]  Christian Bréchot,et al.  The intraflagellar transport component IFT88/polaris is a centrosomal protein regulating G1-S transition in non-ciliated cells , 2007, Journal of Cell Science.

[61]  Hongmin Qin,et al.  Intraflagellar Transport Protein 27 Is a Small G Protein Involved in Cell-Cycle Control , 2007, Current Biology.

[62]  W. Jackson,et al.  Intraflagellar transport is essential for endochondral bone formation , 2007, Development.

[63]  E. Simpson,et al.  Hippi is essential for node cilia assembly and Sonic hedgehog signaling. , 2006, Developmental biology.

[64]  J. Scholey,et al.  The WD repeat-containing protein IFTA-1 is required for retrograde intraflagellar transport. , 2006, Molecular biology of the cell.

[65]  B. Yoder,et al.  IFTA-2 is a conserved cilia protein involved in pathways regulating longevity and dauer formation in Caenorhabditis elegans , 2006, Journal of Cell Science.

[66]  J. Scholey,et al.  Caenorhabditis elegans DYF-2, an orthologue of human WDR19, is a component of the intraflagellar transport machinery in sensory cilia. , 2006, Molecular biology of the cell.

[67]  G. Pazour,et al.  The intraflagellar transport protein IFT20 is associated with the Golgi complex and is required for cilia assembly. , 2006, Molecular biology of the cell.

[68]  L. Bell,et al.  The Molecular Identities of the Caenorhabditis elegans Intraflagellar Transport Genes dyf-6, daf-10 and osm-1 , 2006, Genetics.

[69]  Gáspár Jékely,et al.  Evolution of intraflagellar transport from coated vesicles and autogenous origin of the eukaryotic cilium. , 2006, BioEssays : news and reviews in molecular, cellular and developmental biology.

[70]  J. McIntosh,et al.  Cytoplasmic dynein nomenclature , 2005, The Journal of cell biology.

[71]  S. L. Wong,et al.  Towards a proteome-scale map of the human protein–protein interaction network , 2005, Nature.

[72]  Didier Y. R. Stainier,et al.  Vertebrate Smoothened functions at the primary cilium , 2005, Nature.

[73]  Qihong Zhang,et al.  Gli2 and Gli3 Localize to Cilia and Require the Intraflagellar Transport Protein Polaris for Processing and Function , 2005, PLoS genetics.

[74]  J. Scholey,et al.  Functional coordination of intraflagellar transport motors , 2005, Nature.

[75]  G. Pazour,et al.  Proteomic analysis of a eukaryotic cilium , 2005, The Journal of cell biology.

[76]  J. Scholey Faculty Opinions recommendation of Characterization of the intraflagellar transport complex B core: direct interaction of the IFT81 and IFT74/72 subunits. , 2005 .

[77]  Johannes Söding,et al.  The HHpred interactive server for protein homology detection and structure prediction , 2005, Nucleic Acids Res..

[78]  J. Scholey,et al.  The PKD protein qilin undergoes intraflagellar transport , 2005, Current Biology.

[79]  P. Beales,et al.  Lifting the lid on Pandora's box: the Bardet-Biedl syndrome. , 2005, Current opinion in genetics & development.

[80]  Keith A. Boroevich,et al.  Functional Genomics of the Cilium, a Sensory Organelle , 2005, Current Biology.

[81]  Johannes Söding,et al.  Protein homology detection by HMM?CHMM comparison , 2005, Bioinform..

[82]  Y. Toh,et al.  The dyf-3 gene encodes a novel protein required for sensory cilium formation in Caenorhabditis elegans. , 2005, Journal of molecular biology.

[83]  S. Geimer,et al.  Chlamydomonas IFT172 Is Encoded by FLA11, Interacts with CrEB1, and Regulates IFT at the Flagellar Tip , 2005, Current Biology.

[84]  B. Chait,et al.  Components of Coated Vesicles and Nuclear Pore Complexes Share a Common Molecular Architecture , 2004, PLoS biology.

[85]  J. Scholey,et al.  Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons , 2004, Nature Cell Biology.

[86]  G. Pazour,et al.  A dynein light intermediate chain, D1bLIC, is required for retrograde intraflagellar transport. , 2004, Molecular biology of the cell.

[87]  M. Jinek,et al.  The superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to importin α , 2004, Nature Structural &Molecular Biology.

[88]  Mark S. Miller,et al.  A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney , 2004, Development.

[89]  C. Ponting,et al.  GIFT domains: linking eukaryotic intraflagellar transport and glycosylation to bacterial gliding. , 2004, Trends in biochemical sciences.

[90]  A. Fedorov,et al.  Identification of Functional Residues on Caenorhabditis elegans Actin-interacting Protein 1 (UNC-78) for Disassembly of Actin Depolymerizing Factor/Cofilin-bound Actin Filaments* , 2004, Journal of Biological Chemistry.

[91]  S. R. Wicks,et al.  Loss of C. elegans BBS-7 and BBS-8 protein function results in cilia defects and compromised intraflagellar transport. , 2004, Genes & development.

[92]  S. Geimer,et al.  The Microtubule Plus End-Tracking Protein EB1 Is Localized to the Flagellar Tip and Basal Bodies in Chlamydomonas reinhardtii , 2003, Current Biology.

[93]  Lee Niswander,et al.  Hedgehog signalling in the mouse requires intraflagellar transport proteins , 2003, Nature.

[94]  M. Ikura,et al.  Crystal Structure of the Amino-terminal Microtubule-binding Domain of End-binding Protein 1 (EB1)* , 2003, Journal of Biological Chemistry.

[95]  David K Wilson,et al.  The Structure of Aip1p, a WD Repeat Protein That Regulates Cofilin-mediated Actin Depolymerization* , 2003, Journal of Biological Chemistry.

[96]  S. Baker,et al.  IFT20 Links Kinesin II with a Mammalian Intraflagellar Transport Complex That Is Conserved in Motile Flagella and Sensory Cilia* , 2003, Journal of Biological Chemistry.

[97]  L. Hood,et al.  Isolation and characterization of human and mouse WDR19,a novel WD-repeat protein exhibiting androgen-regulated expression in prostate epithelium. , 2003, Genomics.

[98]  D. Cole The Intraflagellar Transport Machinery of Chlamydomonas reinhardtii , 2003, Traffic.

[99]  Qihong Zhang,et al.  Loss of the Tg737 protein results in skeletal patterning defects , 2003, Developmental dynamics : an official publication of the American Association of Anatomists.

[100]  B. Yoder,et al.  A novel dynein light intermediate chain colocalizes with the retrograde motor for intraflagellar transport at sites of axoneme assembly in chlamydomonas and Mammalian cells. , 2003, Molecular biology of the cell.

[101]  James H. Thomas,et al.  XBX-1 encodes a dynein light intermediate chain required for retrograde intraflagellar transport and cilia assembly in Caenorhabditis elegans. , 2003, Molecular biology of the cell.

[102]  B. Yoder,et al.  Identification of CHE-13, a novel intraflagellar transport protein required for cilia formation. , 2003, Experimental cell research.

[103]  L. Guay-Woodford,et al.  The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. , 2002, Journal of the American Society of Nephrology : JASN.

[104]  P. Lefebvre,et al.  Kinesin-II is not essential for mitosis and cell growth in Chlamydomonas. , 2002, Cell motility and the cytoskeleton.

[105]  G. Pazour,et al.  Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease , 2002, Current Biology.

[106]  S. Baker,et al.  The intraflagellar transport protein, IFT88, is essential for vertebrate photoreceptor assembly and maintenance , 2002, The Journal of cell biology.

[107]  C. Bugg,et al.  Polaris, a protein disrupted in orpk mutant mice, is required for assembly of renal cilium. , 2002, American journal of physiology. Renal physiology.

[108]  A. Hackam,et al.  Recruitment and activation of caspase-8 by the Huntingtin-interacting protein Hip-1 and a novel partner Hippi , 2002, Nature Cell Biology.

[109]  P. Lefebvre,et al.  The bld1 mutation identifies the Chlamydomonas osm-6 homolog as a gene required for flagellar assembly , 2001, Current Biology.

[110]  J. Rosenbaum,et al.  Localization of intraflagellar transport protein IFT52 identifies basal body transitional fibers as the docking site for IFT particles , 2001, Current Biology.

[111]  D. Deretic,et al.  Mutant rab8 Impairs docking and fusion of rhodopsin-bearing post-Golgi membranes and causes cell death of transgenic Xenopus rods. , 2001, Molecular biology of the cell.

[112]  J. Thomas,et al.  The C. elegans homolog of the murine cystic kidney disease gene Tg737 functions in a ciliogenic pathway and is disrupted in osm-5 mutant worms. , 2001, Development.

[113]  Massimo Sassaroli,et al.  Protein Particles in Chlamydomonas Flagella Undergo a Transport Cycle Consisting of Four Phases , 2001, The Journal of cell biology.

[114]  M. Barr,et al.  An autosomal recessive polycystic kidney disease gene homolog is involved in intraflagellar transport in C. elegans ciliated sensory neurons , 2001, Current Biology.

[115]  P. Burkhard,et al.  Coiled coils: a highly versatile protein folding motif. , 2001, Trends in cell biology.

[116]  G. Pazour,et al.  Chlamydomonas IFT88 and Its Mouse Homologue, Polycystic Kidney Disease Gene Tg737, Are Required for Assembly of Cilia and Flagella , 2000, The Journal of cell biology.

[117]  D. Goeddel,et al.  MIP-T3, a Novel Protein Linking Tumor Necrosis Factor Receptor-associated Factor 3 to the Microtubule Network* , 2000, The Journal of Biological Chemistry.

[118]  W. Richards,et al.  The Oak Ridge Polycystic Kidney (orpk) disease gene is required for left-right axis determination. , 2000, Development.

[119]  C. Ponting,et al.  Homology-based method for identification of protein repeats using statistical significance estimates. , 2000, Journal of molecular biology.

[120]  G. Blatch,et al.  The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. , 1999, BioEssays : news and reviews in molecular, cellular and developmental biology.

[121]  T. Ishihara,et al.  A novel WD40 protein, CHE-2, acts cell-autonomously in the formation of C. elegans sensory cilia. , 1999, Development.

[122]  D. Cole,et al.  Kinesin-II, the heteromeric kinesin , 1999, Cellular and Molecular Life Sciences CMLS.

[123]  D T Jones,et al.  Protein secondary structure prediction based on position-specific scoring matrices. , 1999, Journal of molecular biology.

[124]  Temple F. Smith,et al.  The WD repeat: a common architecture for diverse functions. , 1999, Trends in biochemical sciences.

[125]  M. Porter,et al.  Cytoplasmic dynein heavy chain 1b is required for flagellar assembly in Chlamydomonas. , 1999, Molecular biology of the cell.

[126]  G. Pazour,et al.  The DHC1b (DHC2) Isoform of Cytoplasmic Dynein Is Required for Flagellar Assembly , 1999, The Journal of cell biology.

[127]  Lesilee S. Rose,et al.  Two heteromeric kinesin complexes in chemosensory neurons and sensory cilia of Caenorhabditis elegans. , 1999, Molecular biology of the cell.

[128]  G. Piperno,et al.  Distinct Mutants of Retrograde Intraflagellar Transport (IFT) Share Similar Morphological and Molecular Defects , 1998, The Journal of cell biology.

[129]  P. Beech,et al.  Chlamydomonas Kinesin-II–dependent Intraflagellar Transport (IFT): IFT Particles Contain Proteins Required for Ciliary Assembly in Caenorhabditis elegans Sensory Neurons , 1998, The Journal of cell biology.

[130]  G. Pazour,et al.  A Dynein Light Chain Is Essential for the Retrograde Particle Movement of Intraflagellar Transport (IFT) , 1998, The Journal of cell biology.

[131]  G. Piperno,et al.  Transport of a novel complex in the cytoplasmic matrix of Chlamydomonas flagella. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[132]  P. Beech,et al.  The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the flagellar membrane , 1995, The Journal of cell biology.

[133]  M. Wick,et al.  Molecular cloning of a novel protein regulated by opioid treatment of NG108-15 cells. , 1995, Brain research. Molecular brain research.

[134]  John L. Hall,et al.  The Chlamydomonas FLA10 gene encodes a novel kinesin-homologous protein , 1994, The Journal of cell biology.

[135]  W E Sweeney,et al.  Candidate gene associated with a mutation causing recessive polycystic kidney disease in mice. , 1994, Science.

[136]  J. Scholey,et al.  Novel heterotrimeric kinesin-related protein purified from sea urchin eggs , 1993, Nature.

[137]  K. Kozminski,et al.  A motility in the eukaryotic flagellum unrelated to flagellar beating. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[138]  J. Rosenbaum,et al.  Polarity of flagellar assembly in Chlamydomonas , 1992, The Journal of cell biology.

[139]  A. Lupas,et al.  Predicting coiled coils from protein sequences , 1991, Science.

[140]  J. N. Thomson,et al.  Mutant sensory cilia in the nematode Caenorhabditis elegans. , 1986, Developmental biology.

[141]  D. Luck,et al.  Temperature-Sensitive, Assembly-Defective Flagella Mutants of CHLAMYDOMONAS REINHARDTII. , 1982, Genetics.

[142]  L. Larue,et al.  Defective ciliogenesis, embryonic lethality and severe impairment of the Sonic Hedgehog pathway caused by inactivation of the mouse complex A intraflagellar transport gene Ift122/Wdr10, partially overlapping with the DNA repair gene Med1/Mbd4. , 2009, Developmental biology.

[143]  O. Blacque,et al.  Functional genomics of intraflagellar transport-associated proteins in C. elegans. , 2009, Methods in cell biology.

[144]  J. Reiter,et al.  The primary cilium at the crossroads of mammalian hedgehog signaling. , 2008, Current topics in developmental biology.

[145]  H. Omran,et al.  When cilia go bad: cilia defects and ciliopathies , 2008, Nature Reviews Molecular Cell Biology.

[146]  J. Scholey,et al.  The sensory cilia of Caenorhabditis elegans. , 2007, WormBook : the online review of C. elegans biology.

[147]  J. Rosenbaum,et al.  Intraflagellar transport , 2002, Nature Reviews Molecular Cell Biology.

[148]  L. Messiaen,et al.  Cloning and characterization of human WDR10, a novel gene located at 3q21 encoding a WD-repeat protein that is highly expressed in pituitary and testis. , 2001, DNA and cell biology.

[149]  C. Spike,et al.  Analysis of osm-6, a gene that affects sensory cilium structure and sensory neuron function in Caenorhabditis elegans. , 1998, Genetics.

[150]  Wendy S. Schackwitz,et al.  Mutations affecting the chemosensory neurons of Caenorhabditis elegans. , 1995, Genetics.

[151]  H. Lodish Molecular Cell Biology , 1986 .

[152]  David Baker,et al.  proteins STRUCTURE O FUNCTION O BIOINFORMATICS Improving NMR protein structure quality by Rosetta refinement: A molecular , 2022 .