Hydrogen storage in metal–organic frameworks

For any potential hydrogen-storage system, raw uptake capacity must be balanced with the kinetics and thermodynamics of uptake and release. Metal–organic frameworks (MOFs) provide unique systems with large overall pore volumes and surface areas, adjustable pore sizes, and tunable framework–adsorbate interaction by ligand functionalization and metal choice. These remarkable materials can potentially fill the niche between other physisorbents such as activated carbon, which have similar uptake at low temperatures but low affinity for hydrogen at ambient temperature, and chemical sorbents such as hydrides, which have high hydrogen uptakes but undesirable release kinetics and thermodynamics.

[1]  D. D’Alessandro,et al.  Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine. , 2009, Journal of the American Chemical Society.

[2]  F. Švec,et al.  Nanoporous polymers for hydrogen storage. , 2009, Small.

[3]  Ulrich Müller,et al.  Industrial applications of metal-organic frameworks. , 2009, Chemical Society reviews.

[4]  Mircea Dincă,et al.  Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.

[5]  Sang Soo Han,et al.  Recent advances on simulation and theory of hydrogen storage in metal-organic frameworks and covalent organic frameworks. , 2009, Chemical Society reviews.

[6]  Young Eun Cheon,et al.  Enhanced hydrogen storage by palladium nanoparticles fabricated in a redox-active metal-organic framework. , 2009, Angewandte Chemie.

[7]  Gérard Férey,et al.  Heat of adsorption for hydrogen in microporous high-surface-area materials. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[8]  J. Hupp,et al.  An example of node-based postassembly elaboration of a hydrogen-sorbing, metal-organic framework material. , 2008, Inorganic chemistry.

[9]  J. Long,et al.  Hydrogen storage in microporous metal-organic frameworks with exposed metal sites. , 2008, Angewandte Chemie.

[10]  Dan Zhao,et al.  The current status of hydrogen storage in metal–organic frameworks , 2008 .

[11]  J. Hupp,et al.  Alkali metal cation effects on hydrogen uptake and binding in metal-organic frameworks. , 2008, Inorganic chemistry.

[12]  C. Serre,et al.  Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. , 2008, Angewandte Chemie.

[13]  George E. Froudakis,et al.  Why Li Doping in MOFs Enhances H2 Storage Capacity? A Multi-scale Theoretical Study , 2008 .

[14]  C. Serre,et al.  High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[15]  Michael J. Zaworotko,et al.  Supermolecular building blocks (SBBs) for the design and synthesis of highly porous metal-organic frameworks. , 2008, Journal of the American Chemical Society.

[16]  R. Ahuja,et al.  Li-decorated metal–organic framework 5: A route to achieving a suitable hydrogen storage medium , 2007, Proceedings of the National Academy of Sciences.

[17]  Qiang Zhao,et al.  Hydrogen storage in several microporous zeolites , 2007 .

[18]  R. T. Yang,et al.  Gas adsorption and storage in metal-organic framework MOF-177. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[19]  Omar M Yaghi,et al.  Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). , 2007, Journal of the American Chemical Society.

[20]  Gérard Férey,et al.  Calculating Geometric Surface Areas as a Characterization Tool for Metal−Organic Frameworks , 2007 .

[21]  S. Kaskel,et al.  Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties , 2007 .

[22]  Michael A. Miller,et al.  Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal–organic frameworks , 2007 .

[23]  Joseph T Hupp,et al.  Chemical reduction of metal-organic framework materials as a method to enhance gas uptake and binding. , 2007, Journal of the American Chemical Society.

[24]  Krista S. Walton,et al.  Applicability of the BET method for determining surface areas of microporous metal-organic frameworks. , 2007, Journal of the American Chemical Society.

[25]  J. Tarascon,et al.  Mixed-valence li/fe-based metal-organic frameworks with both reversible redox and sorption properties. , 2007, Angewandte Chemie.

[26]  Mohamed Eddaoudi,et al.  Assembly of metal-organic frameworks (MOFs) based on indium-trimer building blocks: a porous MOF with soc topology and high hydrogen storage. , 2007, Angewandte Chemie.

[27]  Wei Zhou,et al.  Hydrogen storage in a prototypical zeolitic imidazolate framework-8. , 2007, Journal of the American Chemical Society.

[28]  Hong‐Cai Zhou,et al.  A mesh-adjustable molecular sieve for general use in gas separation. , 2007, Angewandte Chemie.

[29]  R. T. Yang,et al.  Kinetics and Mechanistic Model for Hydrogen Spillover on Bridged Metal−Organic Frameworks , 2007 .

[30]  Sean Parkin,et al.  Framework-catenation isomerism in metal-organic frameworks and its impact on hydrogen uptake. , 2007, Journal of the American Chemical Society.

[31]  A. Züttel,et al.  Complex hydrides for hydrogen storage. , 2007, Chemical reviews.

[32]  Gérard Férey,et al.  Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101. , 2006, Angewandte Chemie.

[33]  Craig M. Brown,et al.  Hydrogen storage in a microporous metal-organic framework with exposed Mn2+ coordination sites. , 2006, Journal of the American Chemical Society.

[34]  A. Cheetham,et al.  Adsorption of molecular hydrogen on coordinatively unsaturated Ni(II) sites in a nanoporous hybrid material. , 2006, Journal of the American Chemical Society.

[35]  Craig M. Brown,et al.  Neutron powder diffraction study of D2 sorption in Cu3(1,3,5-benzenetricarboxylate)2. , 2006, Journal of the American Chemical Society.

[36]  A. J. Blake,et al.  High H2 adsorption by coordination-framework materials. , 2006, Angewandte Chemie.

[37]  C. Serre,et al.  Synthesis of MIL-102, a chromium carboxylate metal-organic framework, with gas sorption analysis. , 2006, Journal of the American Chemical Society.

[38]  P. Balbuena,et al.  Computational investigation of adsorption of molecular hydrogen on lithium-doped corannulene. , 2006, Journal of Physical Chemistry B.

[39]  A. Blake,et al.  Triggered ligand release coupled to framework rearrangement: generating crystalline porous coordination materials. , 2006, Inorganic chemistry.

[40]  H. R. Moon,et al.  Porous metal-organic framework with coordinatively unsaturated Mn(II) sites:sorption properties for various gases. , 2006, Inorganic chemistry.

[41]  Hong-Cai Zhou,et al.  A metal-organic framework with entatic metal centers exhibiting high gas adsorption affinity. , 2006, Journal of the American Chemical Society.

[42]  J. Marrot,et al.  MIL-96, a porous aluminum trimesate 3D structure constructed from a hexagonal network of 18-membered rings and mu3-oxo-centered trinuclear units. , 2006, Journal of the American Chemical Society.

[43]  Michael O’Keeffe,et al.  Exceptional chemical and thermal stability of zeolitic imidazolate frameworks , 2006, Proceedings of the National Academy of Sciences.

[44]  Banglin Chen,et al.  Hydrogen adsorption in an interpenetrated dynamic metal-organic framework. , 2006, Inorganic chemistry.

[45]  J. Long,et al.  Microporous metal-organic frameworks incorporating 1,4-benzeneditetrazolate: syntheses, structures, and hydrogen storage properties. , 2006, Journal of the American Chemical Society.

[46]  B. Noll,et al.  Synthesis, structural characterization, gas sorption and guest-exchange studies of the lightweight, porous metal-organic framework alpha-[Mg3(O2CH)6]. , 2006, Inorganic chemistry.

[47]  S. Kaskel,et al.  Synthesis and properties of the metal-organic framework Mo3(BTC)2 (TUDMOF-1) , 2006 .

[48]  R. T. Yang,et al.  Hydrogen storage in metal-organic frameworks by bridged hydrogen spillover. , 2006, Journal of the American Chemical Society.

[49]  Yen Wei,et al.  Microporous metal-organic framework constructed from heptanuclear zinc carboxylate secondary building units. , 2006, Chemistry.

[50]  Randall Q Snurr,et al.  Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks. , 2006, The journal of physical chemistry. B.

[51]  Daofeng Sun,et al.  An interweaving MOF with high hydrogen uptake. , 2006, Journal of the American Chemical Society.

[52]  Ulrich Müller,et al.  Hydrogen Adsorption in Metal–Organic Frameworks: Cu‐MOFs and Zn‐MOFs Compared , 2006 .

[53]  Omar M Yaghi,et al.  Exceptional H2 saturation uptake in microporous metal-organic frameworks. , 2006, Journal of the American Chemical Society.

[54]  C. Ania,et al.  H2, N2, CO, and CO2 sorption properties of a series of robust sodalite-type microporous coordination polymers. , 2006, Inorganic chemistry.

[55]  C. Lamberti,et al.  Local Structure of Framework Cu(II) in HKUST-1 Metallorganic Framework: Spectroscopic Characterization upon Activation and Interaction with Adsorbates , 2006 .

[56]  A. Dailly,et al.  Saturation of hydrogen sorption in Zn benzenedicarboxylate and Zn naphthalenedicarboxylate. , 2006, The journal of physical chemistry. B.

[57]  R. T. Yang,et al.  Significantly enhanced hydrogen storage in metal-organic frameworks via spillover. , 2006, Journal of the American Chemical Society.

[58]  Chongli Zhong,et al.  Understanding hydrogen adsorption in metal-organic frameworks with open metal sites: a computational study. , 2006, The journal of physical chemistry. B.

[59]  Omar M Yaghi,et al.  Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. , 2006, Journal of the American Chemical Society.

[60]  T. Emge,et al.  Achieving High Density of Adsorbed Hydrogen in Microporous Metal Organic Frameworks , 2005 .

[61]  M. Monge,et al.  Metal−Organic Scandium Framework: Useful Material for Hydrogen Storage and Catalysis , 2005 .

[62]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[63]  A. Fletcher,et al.  Flexibility in metal-organic framework materials: impact on sorption properties , 2005 .

[64]  Omar M Yaghi,et al.  Strategies for hydrogen storage in metal--organic frameworks. , 2005, Angewandte Chemie.

[65]  T. Yildirim,et al.  Direct observation of hydrogen adsorption sites and nanocage formation in metal-organic frameworks. , 2005, Physical review letters.

[66]  E. Ganz,et al.  Binding energies of hydrogen molecules to isoreticular metal-organic framework materials. , 2005, The Journal of chemical physics.

[67]  Jeffrey R. Long,et al.  Strong H2 Binding and Selective Gas Adsorption within the Microporous Coordination Solid Mg3(O2C-C10H6-CO2)3 , 2005 .

[68]  Hyunuk Kim,et al.  Synthesis, X-ray crystal structures, and gas sorption properties of pillared square grid nets based on paddle-wheel motifs: implications for hydrogen storage in porous materials. , 2005, Chemistry.

[69]  M. Fichtner Nanotechnological Aspects in Materials for Hydrogen Storage , 2005 .

[70]  E. Ruckenstein,et al.  High reversible hydrogen capacity of LiNH2/Li3N mixtures , 2005 .

[71]  E. Ganz,et al.  Computational study of hydrogen binding by metal-organic framework-5. , 2004, The Journal of chemical physics.

[72]  Gérard Férey,et al.  A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction. , 2004, Angewandte Chemie.

[73]  A. Fletcher,et al.  Hysteretic Adsorption and Desorption of Hydrogen by Nanoporous Metal-Organic Frameworks , 2004, Science.

[74]  S. Jhi,et al.  Hydrogen adsorption on boron nitride nanotubes: A path to room-temperature hydrogen storage , 2004 .

[75]  M. P. Suh,et al.  A robust porous material constructed of linear coordination polymer chains: reversible single-crystal to single-crystal transformations upon dehydration and rehydration. , 2004, Angewandte Chemie.

[76]  Omar M Yaghi,et al.  Hydrogen sorption in functionalized metal-organic frameworks. , 2004, Journal of the American Chemical Society.

[77]  J. Johnson,et al.  Microporous metal organic materials: promising candidates as sorbents for hydrogen storage. , 2004, Journal of the American Chemical Society.

[78]  Kimoon Kim,et al.  Microporous manganese formate: a simple metal-organic porous material with high framework stability and highly selective gas sorption properties. , 2004, Journal of the American Chemical Society.

[79]  Wenbin Lin,et al.  Highly interpenetrated metal-organic frameworks for hydrogen storage. , 2004, Angewandte Chemie.

[80]  C. Serre,et al.  Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M(OH)(O2C-C6H4-CO2) (M = Al3+, Cr3+), MIL-53. , 2003, Chemical communications.

[81]  Michael O'Keeffe,et al.  Hydrogen Storage in Microporous Metal-Organic Frameworks , 2003, Science.

[82]  Gérard Férey,et al.  Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy , 2002 .

[83]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[84]  A. Züttel,et al.  Hydrogen-storage materials for mobile applications , 2001, Nature.

[85]  X. Bai,et al.  Hydrogen storage in carbon nitride nanobells , 2001 .

[86]  Hui-Ming Cheng,et al.  Hydrogen storage in carbon nanotubes , 2001 .

[87]  K. D. de Jong,et al.  Hydrogen storage using physisorption – materials demands , 2001 .

[88]  S. Sircar Gibbsian Surface Excess for Gas AdsorptionRevisited , 1999 .

[89]  Ian D. Williams,et al.  A chemically functionalizable nanoporous material (Cu3(TMA)2(H2O)3)n , 1999 .

[90]  Stuart R Batten,et al.  Interpenetrating Nets: Ordered, Periodic Entanglement. , 1998, Angewandte Chemie.

[91]  M. Jaroniec,et al.  Thermodynamics of High-Pressure Adsorption of Argon, Nitrogen, and Methane on Microporous Adsorbents , 1998 .

[92]  Comparison of molecular simulation of adsorption with experiment , 1997 .

[93]  John L. Falconer,et al.  Spillover in Heterogeneous Catalysis , 1995 .

[94]  P. Rao,et al.  Direct Observation of Hydrogen Spillover on Carbon-Supported Platinum and Its Influence on the Hydrogenation of Benzene , 1994 .

[95]  S. Ernst,et al.  Zeolites as media for hydrogen storage , 1995 .

[96]  L. Czepirski,et al.  Virial-type thermal equation of gas-solid adsorption , 1989 .

[97]  M. Boudart,et al.  Surface Diffusion of Hydrogen on Carbon , 1964 .

[98]  E. Teller,et al.  On a Theory of the van der Waals Adsorption of Gases , 1940 .