HidingDisksinFoldedPolygonsThereseC.BiedlyzErikD.DemaineMartinL.yAnnaLubiwyzGo dfriedT.ToussaintJune30,1998AbstractThis pap er considers the problem of nding a simple fold of a given p olygonPthat\hides" (covers b oth sides of ) the largest p ossible disk.We solve this problem by givingap olynomial-time algorithm to ndthelargestpairofequal-radiusnon-overlappingdisks in a p olygonP.The desired fold is then the p erp endicular bisector of the centersof these two disks.We also present some conjectures for the more general multiple-foldcase whenPis a square.1Intro ductionThe giftwrappingproblem asks whether a given p olyhedroncan b e wrapp ed up, or hidden,usingagivenpieceofpap er.Weconsiderthisproblemonedimensiondown:Supp oseyouare given a piece of pap er, in the shap e of some p olygonP.Given another shap eQ, can youhideQby foldingParound it?By \hiding,"we mean that b oth sides ofmust b e coveredbythepap er.Weallowpap ertostickoutb eyondQ,butinsistthatitb efoldedat.Thisdecisionproblemcanb egeneralizedtoanoptimizationproblem:whatisthelargestscalingofthe shap eQthat canb e hiddenby foldingParoundit?In thispap er we consider the case whereQis a disk.We consider onlysimplefoldsthatfoldthepap erPalongonestraightline.Ourstartingp oinissp ecialcasewhereweallowonlyone simple fold.The problem then b ecomes that of packing to non-overlappingcopiesofthelargestdiskp ossibleintoP.Toourknowledge,thisproblemhasnotb eenstudiedb efore.Relatedtothetwo-diskpackingproblemislargest-empty-circleproblem: ndlargest(single)diskthat tsinagivenp olygonP.Thisproblemistraditionall ysolvedbynotingthatthe center ofthe diskmust b eatavertex of themedialaxis[9].It can thusb eScho olofComputerScience,McGillUniversity,3480Street,Montreal,Queb ecH3A2A7,Canada, email:ftherese,godfriedg@cs.mcgill.ca.yDepartment of Computer Science, University of Waterlo o, Waterlo o, Ontario N2L 3G1, Canada, email:feddemaine,mldemaine,alubiwg@uwaterloo.ca.zSupp orted by NSERC.1
[1]
D. T. Lee,et al.
Medial Axis Transformation of a Planar Shape
,
1982,
IEEE Transactions on Pattern Analysis and Machine Intelligence.
[2]
Klara Kedem,et al.
Placing the largest similar copy of a convex polygon among polygonal obstacles
,
1989,
SCG '89.
[3]
Michael Ian Shamos,et al.
Closest-point problems
,
1975,
16th Annual Symposium on Foundations of Computer Science (sfcs 1975).
[4]
G. Toussaint,et al.
Constrained Facility Location
,
2000
.
[5]
Francis Y. L. Chin,et al.
Finding the Medial Axis of a Simple Polygon in Linear Time
,
1995,
ISAAC.
[6]
Leonidas J. Guibas,et al.
A linear-time algorithm for computing the voronoi diagram of a convex polygon
,
1989,
Discret. Comput. Geom..
[7]
F. A. Seiler,et al.
Numerical Recipes in C: The Art of Scientific Computing
,
1989
.
[8]
Joseph O'Rourke,et al.
Computational Geometry in C.
,
1995
.