HCO3- dehydration by the blood of an elasmobranch in the absence of a Haldane effect.

[1]  Walsh,et al.  UREA TRANSPORT BY HEPATOCYTES AND RED BLOOD CELLS OF SELECTED ELASMOBRANCH AND TELEOST FISHES , 1994, The Journal of experimental biology.

[2]  S. Perry,et al.  AN EVALUATION OF FACTORS LIMITING CARBON DIOXIDE EXCRETION BY TROUT RED BLOOD CELLS IN VITRO , 1993 .

[3]  M. Nikinmaa,et al.  Membrane transport and control of hemoglobin-oxygen affinity in nucleated erythrocytes. , 1992, Physiological reviews.

[4]  S. Perry,et al.  A new in vitro assay for carbon dioxide excretion by trout red blood cells: effects of catecholamines. , 1991, The Journal of experimental biology.

[5]  S. Perry,et al.  Adrenergic inhibition of carbon dioxide excretion by trout red blood cells in vitro is mediated by activation of Na+/H+ exchange. , 1991, The Journal of experimental biology.

[6]  C. Wood,et al.  Control of ventilation in the hypercapnic skate Raja ocellata: I. Blood and extradural fluid. , 1990, Respiration physiology.

[7]  F. Jensen Hydrogen ion equilibria in fish haemoglobins. , 1989, The Journal of experimental biology.

[8]  D. Randall,et al.  The functional significance of adrenergic pH regulation in fish erythrocytes , 1989 .

[9]  N. Heisler,et al.  Regulation of ventilation and acid-base status in the elasmobranch Scyliorhinus stellaris during hyperoxia-induced hypercapnia. , 1988, Respiration physiology.

[10]  P. Butler,et al.  Cardiovascular and Respiratory Systems , 1988 .

[11]  R A Klocke,et al.  Velocity of CO2 exchange in blood. , 1988, Annual review of physiology.

[12]  R. Wells,et al.  Oxygen binding properties of blood and hemoglobin solutions in the carpet shark (Cephaloscyllium isabella): Roles of ATP and urea , 1984 .

[13]  R. Weber,et al.  Allosteric interactions governing oxygen equilibria in the haemoglobin system of the spiny dogfish, Squalus acanthias. , 1983, The Journal of experimental biology.

[14]  P. Dejours,et al.  Blood acid-base balance as a function of water oxygenation: a study at two different ambient CO2 levels in the dogfish, Scyliorhinus canicula. , 1980, Respiration physiology.

[15]  G. Somero,et al.  Counteraction of urea destabilization of protein structure by methylamine osmoregulatory compounds of elasmobranch fishes. , 1979, The Biochemical journal.

[16]  A. L. Obaid,et al.  Kinetics of bicarbonate/chloride exchange in dogfish erythrocytes. , 1979, The American journal of physiology.

[17]  K. Pleschka,et al.  Interaction between CO2 transport and O2 transport in the blood of the dogfish Scyliorhinus canicula. , 1970, Respiration physiology.

[18]  K. Pleschka,et al.  Chloride distribution between red blood cells and plasma in the dogfish (Scyliorhinus canicula). , 1969, Respiration physiology.

[19]  B. Packer,et al.  H+ buffering and excretion in response to acute hypercapnia in the dogfish Squalus acanthias. , 1969, The American journal of physiology.

[20]  J. Piiper,et al.  Transport of O2 and CO2 by water and blood in gas exchange of the dogfish (Scyliorhinus stellaris). , 1968, Respiration physiology.

[21]  T. Maren,et al.  Carbonic anhydrase: chemistry, physiology, and inhibition. , 1967, Physiological reviews.

[22]  K. Pleschka,et al.  Effect of temperature on CO2 transport in elasmobranch blood. , 1967, Respiration physiology.