Predictive Feedback, Early Sensory Representations, and Fast Responses to Predicted Stimuli Depend on NMDA Receptors

Learned associations between stimuli allow us to model the world and make predictions, crucial for efficient behavior; e.g., hearing a siren, we expect to see an ambulance and quickly make way. While theoretical and computational frameworks for prediction exist, circuit and receptor-level mechanisms are unclear. Using high-density EEG, Bayesian modeling and machine learning, we show that trial history and frontal alpha activity account for reaction times (a proxy for predictions) on a trial-by-trial basis in an audio-visual prediction task. Predictive beta feedback activated sensory representations in advance of predicted stimuli. Low-dose ketamine, a NMDA receptor blocker – but not the control drug dexmedetomidine – perturbed predictions, their representation in higher-order cortex, and feedback to posterior cortex. This study suggests predictions depend on alpha activity in higher-order cortex, beta feedback and NMDA receptors, and ketamine blocks access to learned predictive information.

[1]  D. Chernik,et al.  Validity and Reliability of the Observer's: Assessment of Alertness/Sedation Scale Study with Intravenous Midazolam , 1990, Journal of clinical psychopharmacology.

[2]  Karl J. Friston,et al.  A theory of cortical responses , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[3]  Judith E. Hall,et al.  Evidence that Subanesthetic Doses of Ketamine Cause Sustained Disruptions of NMDA and AMPA-Mediated Frontoparietal Connectivity in Humans , 2015, The Journal of Neuroscience.

[4]  M. Struys,et al.  Development of an Optimized Pharmacokinetic Model of Dexmedetomidine Using Target-controlled Infusion in Healthy Volunteers , 2015, Anesthesiology.

[5]  A. Borst Seeing smells: imaging olfactory learning in bees , 1999, Nature Neuroscience.

[6]  Gina R Kuperberg,et al.  What do we mean by prediction in language comprehension? , 2016, Language, cognition and neuroscience.

[7]  Roger Ratcliff,et al.  The Diffusion Decision Model: Theory and Data for Two-Choice Decision Tasks , 2008, Neural Computation.

[8]  C. Schroeder,et al.  Role of cortical N-methyl-D-aspartate receptors in auditory sensory memory and mismatch negativity generation: implications for schizophrenia. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[9]  R. Oostenveld,et al.  Reduced Occipital Alpha Power Indexes Enhanced Excitability Rather than Improved Visual Perception , 2013, The Journal of Neuroscience.

[10]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[11]  Deborah A. Prentice,et al.  Contrast tests of interaction hypothesis. , 1997 .

[12]  Andreas Voss,et al.  A fast numerical algorithm for the estimation of diffusion model parameters , 2008 .

[13]  J. Kaas,et al.  Subdivisions of auditory cortex and processing streams in primates. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[14]  M. Mishkin,et al.  Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex , 1999, Nature Neuroscience.

[15]  S. Thompson-Schill,et al.  The evocative power of words: activation of concepts by verbal and nonverbal means. , 2012, Journal of experimental psychology. General.

[16]  F. D. Lange,et al.  How Do Expectations Shape Perception? , 2018, Trends in Cognitive Sciences.

[17]  E. Domino,et al.  Ketamine kinetics in unmedicated and diazepam‐premedicated subjects , 1984, Clinical pharmacology and therapeutics.

[18]  K. N. Dollman,et al.  - 1 , 1743 .

[19]  J Gross,et al.  REPRINTS , 1962, The Lancet.

[20]  Karl J. Friston,et al.  Waking and dreaming consciousness: Neurobiological and functional considerations , 2012, Progress in Neurobiology.

[21]  Thomas Serre,et al.  A feedforward architecture accounts for rapid categorization , 2007, Proceedings of the National Academy of Sciences.

[22]  W. Drongelen,et al.  Localization of brain electrical activity via linearly constrained minimum variance spatial filtering , 1997, IEEE Transactions on Biomedical Engineering.

[23]  Karl J. Friston,et al.  Consciousness, Dreams, and Inference The Cartesian Theatre Revisited , 2014 .

[24]  Doris Y. Tsao,et al.  Patches of face-selective cortex in the macaque frontal lobe , 2008, Nature Neuroscience.

[25]  A. Seth,et al.  Granger Causality Analysis in Neuroscience and Neuroimaging , 2015, The Journal of Neuroscience.

[26]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[27]  T. Gould,et al.  Synthesis and N-Methyl-d-aspartate (NMDA) Receptor Activity of Ketamine Metabolites. , 2017, Organic letters.

[28]  J. Tenenbaum,et al.  Structure and strength in causal induction , 2005, Cognitive Psychology.

[29]  H. Kennedy,et al.  Visual Areas Exert Feedforward and Feedback Influences through Distinct Frequency Channels , 2014, Neuron.

[30]  Lizabeth M. Romanski,et al.  Responses of Prefrontal Multisensory Neurons to Mismatching Faces and Vocalizations , 2014, The Journal of Neuroscience.

[31]  M. Struys,et al.  Dexmedetomidine pharmacokinetic–pharmacodynamic modelling in healthy volunteers: 1. Influence of arousal on bispectral index and sedation , 2017, British journal of anaesthesia.

[32]  M. Tarr,et al.  Activation of the middle fusiform 'face area' increases with expertise in recognizing novel objects , 1999, Nature Neuroscience.

[33]  Christopher. Simons,et al.  Machine learning with Python , 2017 .

[34]  Jim M. Monti,et al.  Expectation and Surprise Determine Neural Population Responses in the Ventral Visual Stream , 2010, The Journal of Neuroscience.

[35]  Benjamin Balas,et al.  EEG correlates of categorical and graded face perception , 2011, Neuropsychologia.

[36]  Steven J. Luck,et al.  ERPLAB: an open-source toolbox for the analysis of event-related potentials , 2014, Front. Hum. Neurosci..

[37]  George A. Mashour,et al.  Neurophysiologic Correlates of Ketamine Sedation and Anesthesia: A High-density Electroencephalography Study in Healthy Volunteers , 2017, Anesthesiology.

[38]  J. Seamans,et al.  Ketamine-Induced Changes in the Signal and Noise of Rule Representation in Working Memory by Lateral Prefrontal Neurons , 2015, The Journal of Neuroscience.

[39]  L. Romanski,et al.  Prefrontal Neuronal Responses during Audiovisual Mnemonic Processing , 2015, The Journal of Neuroscience.

[40]  G. Orban,et al.  Laminar distribution of NMDA receptors in cat and monkey visual cortex visualized by [3H]‐MK‐801 binding , 1993, The Journal of comparative neurology.

[41]  Johan Wagemans,et al.  Activation of Fusiform Face Area by Greebles Is Related to Face Similarity but Not Expertise , 2011, Journal of Cognitive Neuroscience.

[42]  R. VanRullen,et al.  Alpha oscillations and traveling waves: Signatures of predictive coding? , 2019, PLoS biology.

[43]  R. Carhart-Harris,et al.  More Realistic Forecasting of Future Life Events After Psilocybin for Treatment-Resistant Depression , 2018, Front. Psychol..

[44]  J. Kaas,et al.  Auditory processing in primate cerebral cortex , 1999, Current Opinion in Neurobiology.

[45]  Z. Xia,et al.  Dexmedetomidine produced analgesic effect via inhibition of HCN currents. , 2014, European journal of pharmacology.

[46]  Floris P de Lange,et al.  Prior expectations induce prestimulus sensory templates , 2017, Proceedings of the National Academy of Sciences.

[47]  Christoph Kayser,et al.  Causal Inference in the Multisensory Brain , 2018, Neuron.

[48]  Luc H. Arnal,et al.  Cortical oscillations and sensory predictions , 2012, Trends in Cognitive Sciences.

[49]  M. Tarr,et al.  The N170 occipito‐temporal component is delayed and enhanced to inverted faces but not to inverted objects: an electrophysiological account of face‐specific processes in the human brain , 2000, Neuroreport.

[50]  Xue Wang,et al.  Estimating Granger causality after stimulus onset: A cautionary note , 2008, NeuroImage.

[51]  W. Klimesch Alpha-band oscillations, attention, and controlled access to stored information , 2012, Trends in Cognitive Sciences.

[52]  Arnaud Delorme,et al.  EEGLAB, SIFT, NFT, BCILAB, and ERICA: New Tools for Advanced EEG Processing , 2011, Comput. Intell. Neurosci..

[53]  Karl J. Friston,et al.  Selective Prefrontal Disinhibition in a Roving Auditory Oddball Paradigm Under N-Methyl-D-Aspartate Receptor Blockade , 2019, Biological psychiatry. Cognitive neuroscience and neuroimaging.

[54]  Ayan S. Waite,et al.  Layer and rhythm specificity for predictive routing , 2020, Proceedings of the National Academy of Sciences.

[55]  R. DeRubeis,et al.  Depressive symptoms are associated with unrealistic negative predictions of future life events. , 2006, Behaviour research and therapy.

[56]  Nanxin Li,et al.  mTOR-Dependent Synapse Formation Underlies the Rapid Antidepressant Effects of NMDA Antagonists , 2010, Science.

[57]  P. Fletcher,et al.  Prediction error, ketamine and psychosis: An updated model , 2016, Journal of psychopharmacology.

[58]  Erich Seifritz,et al.  Mismatch Negativity Encoding of Prediction Errors Predicts S-ketamine-Induced Cognitive Impairments , 2012, Neuropsychopharmacology.

[59]  Y. Izumi,et al.  Ketamine: NMDA Receptors and Beyond , 2016, The Journal of Neuroscience.

[60]  E. Krusemark,et al.  From Early Sensory Specialization to Later Perceptual Generalization: Dynamic Temporal Progression in Perceiving Individual Threats , 2013, The Journal of Neuroscience.

[61]  Francis Tuerlinckx,et al.  Diffusion model analysis with MATLAB: A DMAT primer , 2008, Behavior research methods.

[62]  Stefan Everling,et al.  NMDA Antagonist Ketamine Reduces Task Selectivity in Macaque Dorsolateral Prefrontal Neurons and Impairs Performance of Randomly Interleaved Prosaccades and Antisaccades , 2012, The Journal of Neuroscience.

[63]  R. Desimone,et al.  Laminar differences in gamma and alpha coherence in the ventral stream , 2011, Proceedings of the National Academy of Sciences.

[64]  Sue L. Denham,et al.  Auditory Event-related Potentials , 2014, Encyclopedia of Computational Neuroscience.

[65]  Elias B. Issa,et al.  Neural dynamics at successive stages of the ventral visual stream are consistent with hierarchical error signals , 2018, eLife.

[66]  Karl J. Friston The free-energy principle: a unified brain theory? , 2010, Nature Reviews Neuroscience.

[67]  R N Aslin,et al.  Statistical Learning by 8-Month-Old Infants , 1996, Science.

[68]  D Mumford,et al.  On the computational architecture of the neocortex. II. The role of cortico-cortical loops. , 1992, Biological cybernetics.

[69]  P. Alku,et al.  Event-related potentials associated with sound discrimination versus novelty detection in children. , 2004, Psychophysiology.

[70]  B. Moghaddam,et al.  Orbitofrontal cortex neurons as a common target for classic and glutamatergic antipsychotic drugs , 2008, Proceedings of the National Academy of Sciences.

[71]  Ayan S. Waite,et al.  Layer and rhythm specificity for predictive routing , 2020, Proceedings of the National Academy of Sciences.

[72]  Hailan Hu,et al.  Ketamine blocks bursting in the lateral habenula to rapidly relieve depression , 2018, Nature.

[73]  Depression and pessimism for the future: biased use of statistically relevant information in predictions for self versus others. , 1987 .

[74]  O. Jensen,et al.  Shaping Functional Architecture by Oscillatory Alpha Activity: Gating by Inhibition , 2010, Front. Hum. Neurosci..

[75]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[76]  Biao Han,et al.  The rhythms of predictive coding? Pre-stimulus phase modulates the influence of shape perception on luminance judgments , 2016, Scientific Reports.

[77]  Konrad Paul Kording,et al.  Bayesian integration in sensorimotor learning , 2004, Nature.

[78]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[79]  Xiao-Jing Wang,et al.  Linking microcircuit dysfunction to cognitive impairment: effects of disinhibition associated with schizophrenia in a cortical working memory model. , 2014, Cerebral cortex.

[80]  Michael W. Spratling A review of predictive coding algorithms , 2017, Brain and Cognition.

[81]  Dirk Abel,et al.  Simulation physiologischer Regelkreise mit der objektorientierten Modellbibliothek “HumanLib” , 2011, Autom..

[82]  P. Roelfsema,et al.  Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex , 2014, Proceedings of the National Academy of Sciences.

[83]  D. Bayliss,et al.  HCN1 Channel Subunits Are a Molecular Substrate for Hypnotic Actions of Ketamine , 2009, The Journal of Neuroscience.

[84]  Jennifer A. Mangels,et al.  Predictive Codes for Forthcoming Perception in the Frontal Cortex , 2006, Science.

[85]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[86]  B. Moghaddam,et al.  NMDA Receptor Hypofunction Produces Opposite Effects on Prefrontal Cortex Interneurons and Pyramidal Neurons , 2007, The Journal of Neuroscience.

[87]  M. Tarr,et al.  Visual expertise with nonface objects leads to competition with the early perceptual processing of faces in the human occipitotemporal cortex. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[88]  Bruno M. Sousa,et al.  Hemispheric specialization in face recognition: from spatial frequencies to holistic/analytic cognitive processing , 2014 .

[89]  Naotsugu Tsuchiya,et al.  Neural markers of predictive coding under perceptual uncertainty revealed with Hierarchical Frequency Tagging , 2017, eLife.

[90]  H. Critchley,et al.  An Interoceptive Predictive Coding Model of Conscious Presence , 2011, Front. Psychology.

[91]  Thomas V. Wiecki,et al.  HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python , 2013, Front. Neuroinform..

[92]  Matthew W Self,et al.  Different glutamate receptors convey feedforward and recurrent processing in macaque V1 , 2012, Proceedings of the National Academy of Sciences.

[93]  M. Tarr,et al.  Expertise Training with Novel Objects Leads to Left-Lateralized Facelike Electrophysiological Responses , 2002, Psychological science.

[94]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[95]  Dennis S. Charney,et al.  Ketamine for Depression: Where Do We Go from Here? , 2012, Biological Psychiatry.

[96]  E. Domino,et al.  Plasma Levels of Ketamine and Two of Its Metabolites in Surgical Patients Using a Gas Chromatographic Mass Fragmentographic Assay , 1982, Anesthesia and analgesia.

[97]  Karl J. Friston,et al.  Canonical Microcircuits for Predictive Coding , 2012, Neuron.

[98]  Patrick J. McGrath,et al.  Electroencephalographic Alpha Measures Predict Therapeutic Response to a Selective Serotonin Reuptake Inhibitor Antidepressant: Pre- and Post-Treatment Findings , 2008, Biological Psychiatry.

[99]  Arnaud Delorme,et al.  EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis , 2004, Journal of Neuroscience Methods.

[100]  Geoffrey E. Hinton,et al.  The Helmholtz Machine , 1995, Neural Computation.

[101]  M. Tarr,et al.  FFA: a flexible fusiform area for subordinate-level visual processing automatized by expertise , 2000, Nature Neuroscience.

[102]  D. Mumford On the computational architecture of the neocortex , 2004, Biological Cybernetics.