Efficient vector-descriptor product exploiting time-memory trade-offs

The description of large state spaces through stochastic structured modeling formalisms like stochastic Petri nets, stochastic automata networks and performance evaluation process algebra usually represent the infinitesimal generator of the underlying Markov chain as a Kronecker descriptor instead of a single large sparse matrix. The best known algorithms used to compute iterative solutions of such structured models are: the pure sparse solution approach, an algorithm that can be very time efficient, and almost always memory prohibitive; the Shuffle algorithm which performs the product of a descriptor by a probability vector with a very impressive memory efficiency; and a newer option that offers a trade-off between time and memory savings, the Split algorithm. This paper presents a comparison of these algorithms solving some examples of structured Kronecker represented models in order to numerically illustrate the gains achieved considering each model's characteristics.

[1]  Paulo Fernandes,et al.  Performance Models For Master/Slave Parallel Programs , 2005, Electron. Notes Theor. Comput. Sci..

[2]  Paulo Fernandes,et al.  PEPS2007 - Stochastic Automata Networks Software Tool , 2007, Fourth International Conference on the Quantitative Evaluation of Systems (QEST 2007).

[3]  Luca de Alfaro,et al.  Symbolic Model Checking of Probabilistic Processes Using MTBDDs and the Kronecker Representation , 2000, TACAS.

[4]  Jane Hillston,et al.  A compositional approach to performance modelling , 1996 .

[5]  Peter Buchholz,et al.  Complexity of Memory-Efficient Kronecker Operations with Applications to the Solution of Markov Models , 2000, INFORMS J. Comput..

[6]  Paulo Fernandes,et al.  The Need for and the Advantages of Generalized Tensor Algebra for Kronecker Structured Representations , 2005 .

[7]  Marco Ajmone Marsan,et al.  A class of generalized stochastic Petri nets for the performance evaluation of multiprocessor systems , 1984, TOCS.

[8]  Edsger W. Dijkstra,et al.  Hierarchical ordering of sequential processes , 1971, Acta Informatica.

[9]  Jean-Marc Vincent,et al.  Split: a flexible and efficient algorithm to vector-descriptor product , 2007, VALUETOOLS.

[10]  Jane Hillston,et al.  An Efficient Kronecker Representation for PEPA Models , 2001, PAPM-PROBMIV.

[11]  John G. Lewis,et al.  Sparse matrix test problems , 1982, SGNM.

[12]  Luis Gustavo Ramos Zani,et al.  PEPS2015 - STOCHASTIC AUTOMATA NETWORKS SOFTWARE TOOL , 2007 .

[13]  Leonardo Brenner Réseaux d'Automates Stochastiques : Analyse transitoire en temps continu et algèbre tensorielle pour une sémantique en temps discret. (Stochastic Automata Networks: Transient analysis for continuous time models and tensor algebra for a semantic of discrete time models) , 2009 .

[14]  Marc Davio,et al.  Kronecker products and shuffle algebra , 1981, IEEE Transactions on Computers.

[15]  Afonso Sales,et al.  Reachable State Space Generation for Structured Models which Use Functional Transitions , 2009, 2009 Sixth International Conference on the Quantitative Evaluation of Systems.

[16]  Paulo Fernandes,et al.  On the benefits of using functional transitions and Kronecker algebra , 2004, Perform. Evaluation.

[17]  Hassan S. Bakouch,et al.  Probability, Markov chains, queues, and simulation , 2011 .

[18]  Paulo Fernandes,et al.  Optimizing tensor product computations in stochastic automata networks , 1998 .

[19]  Afonso Henrique Correa De Sales Réseaux d'Automates Stochastiques : Génération de l'espace d'états atteignables et Multiplication vecteur-descripteur pour une sémantique en temps discret. (Stochastic Automata Networks : Reachable state space generation and Vector-descriptor product for a semantic of discrete time models) , 2009 .

[20]  Andrew S. Miner Efficient solution of GSPNs using canonical matrix diagrams , 2001, Proceedings 9th International Workshop on Petri Nets and Performance Models.

[21]  Jane Hillston,et al.  Formal techniques for performance analysis: blending SAN and PEPA , 2007, Formal Aspects of Computing.

[22]  Avelino Francisco Zorzo,et al.  Analytical Modeling for Operating System Schedulers on NUMA Systems , 2006, Electron. Notes Theor. Comput. Sci..

[23]  FernandesPaulo,et al.  Efficient descriptor-vector multiplications in stochastic automata networks , 1998 .

[24]  Paulo Fernandes,et al.  Efficient descriptor-vector multiplications in stochastic automata networks , 1998, JACM.

[25]  Gianfranco Ciardo,et al.  Exploiting interleaving semantics in symbolic state-space generation , 2007, Formal Methods Syst. Des..

[26]  Susanna Donatelli,et al.  Superposed Stochastic Automata: A Class of Stochastic Petri Nets with Parallel Solution and Distributed State Space , 1993, Perform. Evaluation.

[27]  G. De Micheli,et al.  Computer-Oriented Formulation of Transition-Rate Matrices via Kronecker Algebra , 1981, IEEE Transactions on Reliability.

[28]  William J. Stewart,et al.  Probability, Markov Chains, Queues, and Simulation: The Mathematical Basis of Performance Modeling , 2009 .

[29]  Paulo Fernandes,et al.  Modular analytical performance models for ad hoc wireless networks , 2005, Third International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt'05).

[30]  Susanna Donatelli,et al.  Superposed Generalized Stochastic Petri Nets: Definition and Efficient Solution , 1994, Application and Theory of Petri Nets.

[31]  Thais Christina Webber dos Santos,et al.  Reducing the impact of state space explosion in Stochastic Automata Networks , 2009 .

[32]  Paulo Fernandes,et al.  GTAexpress: A Software Package to Handle Kronecker Descriptors , 2009, 2009 Sixth International Conference on the Quantitative Evaluation of Systems.

[33]  Gianfranco Ciardo,et al.  Efficient Reachability Set Generation and Storage Using Decision Diagrams , 1999, ICATPN.

[34]  Paulo Fernandes Méthodes numériques pour la solution de systèmes Markoviens à grand espace d'états. (Numerical methods to solve Markovian systems with large state space) , 1998 .

[35]  Brigitte Plateau,et al.  Stochastic Automata Network For Modeling Parallel Systems , 1991, IEEE Trans. Software Eng..