Bismuth Enhances the Stability of CH3NH3PbI3 (MAPI) Perovskite under High Humidity

Methylammonium lead iodide (CH3NH3PbI3, MAPI) is a high-performance solar cell material but lacks stability in the presence of humidity. Addition of a few percent bismuth (Bi) as a trivalent cation substitute for Pb (i.e., MAP(Bi)I) leads to enhanced stability under high (90%) relative humidity (RH). At moderate humidity (60% RH), however, MAP(Bi)I degrades more rapidly than MAPI. Bi incorporation into MAPI either stabilizes or destabilizes the two hydration products, MAPI·H2O and PbI2, depending on the amount of humidity in the environment.

[1]  Yu Cao,et al.  Efficient Perovskite Solar Cells Fabricated by Co Partially Substituted Hybrid Perovskite , 2018, Advanced Energy Materials.

[2]  William W. Yu,et al.  Simultaneous Strontium Doping and Chlorine Surface Passivation Improve Luminescence Intensity and Stability of CsPbI3 Nanocrystals Enabling Efficient Light‐Emitting Devices , 2018, Advanced materials.

[3]  M. Ikegami,et al.  Stabilization of α-CsPbI3 in Ambient Room Temperature Conditions by Incorporating Eu into CsPbI3 , 2018, Chemistry of Materials.

[4]  T. Miyasaka,et al.  Invalidity of Band-Gap Engineering Concept for Bi3+ Heterovalent Doping in CsPbBr3 Halide Perovskite. , 2018, The journal of physical chemistry letters.

[5]  T. Xu,et al.  Divalent Anionic Doping in Perovskite Solar Cells for Enhanced Chemical Stability , 2018, Advanced materials.

[6]  Hongwei Song,et al.  Carrier Interfacial Engineering by Bismuth Modification for Efficient and Thermoresistant Perovskite Solar Cells , 2018 .

[7]  A. Ciccioli,et al.  Thermodynamics and the Intrinsic Stability of Lead Halide Perovskites CH3NH3PbX3. , 2018, The journal of physical chemistry letters.

[8]  M. Li,et al.  Pb–Sn–Cu Ternary Organometallic Halide Perovskite Solar Cells , 2018, Advances in Materials.

[9]  P. Müller‐Buschbaum,et al.  In Situ Monitoring the Uptake of Moisture into Hybrid Perovskite Thin Films. , 2018, The journal of physical chemistry letters.

[10]  A. Zaoui,et al.  First-Principles Modeling of Bismuth Doping in the MAPbI3 Perovskite , 2018 .

[11]  Anders Hagfeldt,et al.  Perovskite Solar Cells: From the Atomic Level to Film Quality and Device Performance. , 2018, Angewandte Chemie.

[12]  Wasim J. Mir,et al.  Can B-Site Doping or Alloying Improve Thermal- and Phase-Stability of All-Inorganic CsPbX3 (X = Cl, Br, I) Perovskites? , 2018 .

[13]  H. Snaith,et al.  Impact of Bi3+ Heterovalent Doping in Organic-Inorganic Metal Halide Perovskite Crystals. , 2018, Journal of the American Chemical Society.

[14]  S. Hayase,et al.  Structural Stability of Iodide Perovskite: A Combined Cluster Expansion Method and First-Principles Study , 2017 .

[15]  R. Akashi,et al.  Impact of Chemical Doping on Optical Responses in Bismuth-Doped CH3NH3PbBr3 Single Crystals: Carrier Lifetime and Photon Recycling. , 2017, The journal of physical chemistry letters.

[16]  M. Loi,et al.  Broadly tunable metal halide perovskites for solid-state light-emission applications , 2017 .

[17]  M. Green,et al.  Strontium-Doped Low-Temperature-Processed CsPbI2Br Perovskite Solar Cells , 2017 .

[18]  Qingmin Ji,et al.  Bismuth Incorporation Stabilized α-CsPbI3 for Fully Inorganic Perovskite Solar Cells , 2017 .

[19]  Liyun Zhao,et al.  Advances in Small Perovskite‐Based Lasers , 2017 .

[20]  Hong Yan,et al.  Bandgap Narrowing in Bi-Doped CH3NH3PbCl3 Perovskite Single Crystals and Thin Films , 2017 .

[21]  Yongli Gao,et al.  Light-Induced Degradation of CH3NH3PbI3 Hybrid Perovskite Thin Film , 2017 .

[22]  Federico Bella,et al.  Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers , 2016, Science.

[23]  Sergii Yakunin,et al.  Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites , 2016, Nature Photonics.

[24]  Liyuan Han,et al.  n-Type Doping and Energy States Tuning in CH3NH3Pb1–xSb2x/3I3 Perovskite Solar Cells , 2016 .

[25]  M. Li,et al.  High Efficiency Pb–In Binary Metal Perovskite Solar Cells , 2016, Advanced materials.

[26]  S. Mhaisalkar,et al.  Perovskite Materials for Light‐Emitting Diodes and Lasers , 2016, Advanced materials.

[27]  B. Song,et al.  Ultrabroad Photoluminescence and Electroluminescence at New Wavelengths from Doped Organometal Halide Perovskites. , 2016, The journal of physical chemistry letters.

[28]  Lijia Liu,et al.  Dissociation of Methylammonium Cations in Hybrid Organic-Inorganic Perovskite Solar Cells. , 2016, Nano letters.

[29]  A. Dobrovolsky,et al.  Super-Resolution Luminescence Microspectroscopy Reveals the Mechanism of Photoinduced Degradation in CH3NH3PbI3 Perovskite Nanocrystals , 2016 .

[30]  Donald Chung,et al.  On the Path to SunShot. The Role of Advancements in Solar Photovoltaic Efficiency, Reliability, and Costs , 2016 .

[31]  Kai Zhu,et al.  Perovskite Solar Cells Shine in the “Valley of the Sun” , 2016 .

[32]  Zhike Liu,et al.  Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity , 2016, Nature Communications.

[33]  M. Saidaminov,et al.  Making and Breaking of Lead Halide Perovskites. , 2016, Accounts of chemical research.

[34]  J. Berry,et al.  Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys , 2016 .

[35]  Oleksandr Voznyy,et al.  Heterovalent Dopant Incorporation for Bandgap and Type Engineering of Perovskite Crystals. , 2016, The journal of physical chemistry letters.

[36]  David Cahen,et al.  Cesium Enhances Long-Term Stability of Lead Bromide Perovskite-Based Solar Cells. , 2015, The journal of physical chemistry letters.

[37]  Wolfgang Kowalsky,et al.  Water Infiltration in Methylammonium Lead Iodide Perovskite : Fast and Inconspicuous , 2015 .

[38]  Jinsong Huang,et al.  Chloride Incorporation Process in CH₃NH₃PbI(3-x)Cl(x) Perovskites via Nanoscale Bandgap Maps. , 2015, Nano letters.

[39]  M. Chabinyc,et al.  Crystal and Electronic Structures of Complex Bismuth Iodides A3Bi2I9 (A = K, Rb, Cs) Related to Perovskite: Aiding the Rational Design of Photovoltaics , 2015 .

[40]  A. Subbiah,et al.  Exploring Thermochromic Behavior of Hydrated Hybrid Perovskites in Solar Cells , 2015 .

[41]  Nam-Gyu Park,et al.  Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. , 2015, Journal of the American Chemical Society.

[42]  Tao Xu,et al.  Pseudohalide-induced moisture tolerance in perovskite CH3 NH3 Pb(SCN)2 I thin films. , 2015, Angewandte Chemie.

[43]  Jenny Nelson,et al.  Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells , 2015 .

[44]  Jeffrey A. Christians,et al.  Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. , 2015, Journal of the American Chemical Society.

[45]  Prashant V Kamat,et al.  All solution-processed lead halide perovskite-BiVO4 tandem assembly for photolytic solar fuels production. , 2015, Journal of the American Chemical Society.

[46]  H. Snaith,et al.  The Raman Spectrum of the CH3NH3PbI3 Hybrid Perovskite: Interplay of Theory and Experiment. , 2014, The journal of physical chemistry letters.

[47]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[48]  I. Pepe,et al.  Optical determination of the direct bandgap energy of lead iodide crystals , 1996 .

[49]  M. Avrami Kinetics of Phase Change. I General Theory , 1939 .