Fractographic-fractal dimension correlation with crack initiation and fatigue life for notched aluminium alloys under bending load

[1]  D. Rozumek,et al.  NON-LOCAL VOLUMETRIC APPROACH TO ANALYSIS DEFECT'S SHAPE INFLUENCE ON SPECIMENS DURABILITY SUBJECTED TO BENDING AND TORSION , 2022, International Journal of Fatigue.

[2]  T. A. Palmer,et al.  Combining Fractal and Topological Analyses to Quantify Fracture Surfaces in Additively Manufactured Ti-6Al-4V , 2022, International Journal of Fatigue.

[3]  G. Lesiuk,et al.  Load path sensitivity and multiaxial fatigue life prediction of metals under non-proportional loadings , 2022, International Journal of Fatigue.

[4]  J. Correia,et al.  The energy approach to fatigue crack growth of S355 steel welded specimens subjected to bending , 2022, Theoretical and Applied Fracture Mechanics.

[5]  S. Natarajan,et al.  Adaptive modelling of dynamic brittle fracture - a combined phase field regularized cohesive zone model and scaled boundary finite element approach , 2022, International Journal of Fracture.

[6]  R. Nejad,et al.  Assessment of unusual failure in crankshaft of heavy-duty truck engine , 2022, Engineering Failure Analysis.

[7]  F. Berto,et al.  Notch fatigue analysis and life assessment using an energy field intensity approach in 7050-T6 aluminium alloy under bending-torsion loading , 2022, International Journal of Fatigue.

[8]  D. Branson,et al.  Optical metrology for digital manufacturing: a review , 2022, The International Journal of Advanced Manufacturing Technology.

[9]  L. Romoli,et al.  Torsional-loaded notched specimen fatigue strength prediction based on mode I and mode III critical distances and fracture surface investigations with a 3D optical profilometer , 2022, International Journal of Fatigue.

[10]  W. Macek The impact of surface slope and calculation resolution on the fractal dimension for fractures of steels after bending-torsion fatigue , 2022, Surface Topography: Metrology and Properties.

[11]  R. Branco,et al.  Fracture surface topography investigation and fatigue life assessment of notched austenitic steel specimens , 2022, Engineering Failure Analysis.

[12]  R. Branco,et al.  Fractal dimension for bending–torsion fatigue fracture characterisation , 2021 .

[13]  Filippo Berto,et al.  Comparison of different one-parameter damage laws and local stress-strain approaches in multiaxial fatigue life assessment of notched components , 2021 .

[14]  W. Macek Fracture surface formation of notched 2017A-T4 aluminium alloy under bending fatigue , 2021, International Journal of Fracture.

[15]  G. Lesiuk,et al.  Fatigue crack growth under mixed-mode I + II and I + III in heat treated 42CrMo4 steel , 2021, International Journal of Fracture.

[16]  L. Ponson,et al.  Damage spreading in quasi-brittle disordered solids: II. What the statistics of precursors teach us about compressive failure , 2021, Journal of the Mechanics and Physics of Solids.

[17]  P. Podulka The Effect of Surface Topography Feature Size Density and Distribution on the Results of a Data Processing and Parameters Calculation with a Comparison of Regular Methods , 2021, Materials.

[18]  G. Lesiuk,et al.  Determination of fracture energy (mode I) in the inverse fiber metal laminates using experimental–numerical approach , 2021, International Journal of Fracture.

[19]  L. Ponson,et al.  Numerical fracture mechanics based prediction for the roughening of brittle cracks in 2D disordered solids , 2021, International Journal of Fracture.

[20]  J. Tomków,et al.  The Influence of Tool Shape and Process Parameters on the Mechanical Properties of AW-3004 Aluminium Alloy Friction Stir Welded Joints , 2021, Materials.

[21]  A. D. de Jesus,et al.  Recent advances on size effect in metal fatigue under defects: a review , 2021, International Journal of Fracture.

[22]  R. Luciano,et al.  Structural integrity of shot peened Ti6Al4V specimens under fretting fatigue , 2021, International Journal of Fracture.

[23]  J. Królczyk,et al.  Comparative assessment of the surface topography for different optical profilometry techniques after dry turning of Ti6Al4V titanium alloy , 2021 .

[24]  D. Rozumek,et al.  Surface cracks growth in aluminum alloy AW-2017A-T4 under combined loadings , 2020 .

[25]  D. Rozumek,et al.  Surface topography analysis based on fatigue fractures obtained with bending of the 2017A-T4 alloy , 2020 .

[26]  A. Deschamps,et al.  Precipitation in original Duralumin A-U4G versus modern 2017A alloy , 2019 .

[27]  W. Macek Post-failure fracture surface analysis of notched steel specimens after bending-torsion fatigue , 2019, Engineering Failure Analysis.

[28]  A. Seweryn,et al.  Fatigue life of EN AW-2024 alloy accounting for creep pre-deformation at elevated temperature , 2017 .

[29]  Kiyoshi Tanaka,et al.  Calculation method for maximum low-cycle fatigue loads using FRASTA reconstruction data , 2013, International Journal of Fracture.

[30]  J. Pokluda,et al.  Quantitative fractography in bending-torsion fatigue , 2007 .

[31]  J. Planès,et al.  Fractal Dimension of Fractured Surfaces: A Universal Value? , 1990 .

[32]  B. Mandelbrot,et al.  Fractal character of fracture surfaces of metals , 1984, Nature.

[33]  F. Berto,et al.  Artificial neural network based fatigue life assessment of friction stir welding AA2024-T351 aluminum alloy and multi-objective optimization of welding parameters , 2022, International Journal of Fatigue.

[34]  H. Lauschmann,et al.  Quantitative fractography of fatigue cracks: a new solution in 3D , 2019, Procedia Structural Integrity.

[35]  D. Shockey,et al.  The relationship between fracture surface roughness and fatigue load parameters , 2001 .